Theory of Computation (ToC)
Automata Theory (AT)

Rupak R. Gupta (RRG)
Aaditya Joil (Jojo)

2025

Contents

I Fundamentals and Finite Automatal 4
[1.1 Terminologies| 4
1.1.1 Symbol] 4

1.1.2 String] 4
[1.1.3 Alphabet| 4
[1.1.4 Language| 5
[L.2__Finite State Machines 5
1.2.1 State].« o e 5
[1.2.2 lransitionl oL)

1.3 Deterministic Finite Automatal 6
[1.3.1 Acceptance of a String by a DFA| 6

1.3.2 Minimisati N 6
11.3.3 K-equivalency Method of reducing DFA| 7
11.3.4 Myhill-Nerode Theorem| 8

1.4 Regular Languages| 9
[1.4.1 Operations on Regular Languages| 9

[.5 Non-Deterministic Finite Automatal 10
BT eNFAl . . .o 11
[1.5.2 Conversion to DFA[. 12

[1.6 FSM with output|. 12
[1.6.1 Mealy Machines| o 12
[1.6.2 Moore Machines| 12
|1.6.3 Representations of Mealy and Moore Machines| 13
[1.6.4 Interconversion of Mealy and Moore Machines] 13

Page 1 of

2

Language and Grammar|

2.1.1 Chomsky Hierarchy|

2.1.2 Regular Grammar| o

2.2 Regular Sets|.

2.2.1 Basic Operations| e

[2.2.2 Closure Properties|

2.3 Regular Expressions| L o

13.2.2 Right Derivation Tree| o oo

[3.2.3 Ambiguous Grammar|

3.3 Simplification of CFG|

3.3.4 Chomsky Normal Form|,

B4 Pumping Lemma|o

3.5 Closure Properties|

Page 2 of

13.5.5 Not Closed under Complementation|

3.5.6 Every Regular Language is Context-free|

4.1.1 Components of a PDA|

4.1.2 Formal Definition|. .

4.1.3 Instantaneous Description| oo

[4.1.4 Acceptance by a PDA| oo

4.1.5 Graphical Notation| .

4.2.2 Non-Deterministic Push n Automatal

4.3 Equivalence between CFG and PDA|

4.3.1 nstruction of a PDA from PGl

b.3 Mechanical Diagram|

b.4 Instantaneous Description| .

.5 Transitional Representation|

ACronyms

Page 3 of

42
42
42
43
44
44
44
44
44
45
46
46
47
47

48
48
48
49
49
50

51

Chapter

Fundamentals and Finite Automata

1.1 Terminologies

1.1.1 Symbol

A symbol is a user-defined entity. Some examples of symbols are a, b, ¢, 0, 1, 2, etc.

1.1.2 String

A string is defined as a sequence of symbols of a finite length.

A string is denoted as w while the length of a string is denoted as |w|. For example, if w = 000111
is a binary string then |w| = |000111] = 6.
The Empty String

The empty string is denoted as e. it is defined as a string whose length is zero, i.e. |e| := 0.

1.1.3 Alphabet

An alphabet is a finite set of symbols. An alphabet is denoted as . For example, {0,1} is a
binary alphabet while {a,b,¢,...,2, A, B,C,...,Z} is an alphabet set for the English language.

Powers of Sigma™

For an alphabet 3, ¥™ denotes the set of all strings of length n.

For example, if ¥ = {0,1}, then:

20 = {e},
2t ={0,1},
»? = {00,01,10,11} and so on.

Corollary 1. |X"| = |Z|", where || denotes the cardinality of the set 3.

Page 4 of

The set of all possible strings for an alphabet ¥ is denoted by X*. It is defined as:

2 =xustus?u-. =3 (1.1)
=0

1.1.4 Language

A language is a collection of strings. It is denoted as L. For example, L = {00,01,10,11} is a

language comprising all binary strings of length 2.

E.g., if L denotes the language consisting of all binary strings that begin with a ‘0’, then

0, 01, 010, 011,
L=< 00, 001, 0010, 0011,

1.2 Finite State Machines

A Finite State Machine (FSM) or Finite Automaton (FA) is the machine format of regular

expressions. It has a very limited memory. It cannot store or count strings.

Finite Automata

|
Y Y

FA with output FA without output

| I
v v Yooy v

Mealy Machine Moore Machine DFA NFA eNFA

Figure 1.1: Classification of Finite Automata

1.2.1 State

A finite automaton, at any given point of time during it’s working, is always in a state. This
state is chosen from a set of states which is specified for a given automaton. Information is

conveyed to the outside world through this state.

1.2.2 Transition

Upon encountering a specific input, a finite automaton may choose to move from it’s current
state to a new one, or choose to stay in the same state. This process of change of state is known

as transitioning from one state to another.

The specific state transitions are usually specified in terms of a mathematical function called the

transition function.

Page 5 of

1.3 Deterministic Finite Automata

A Deterministic Finite Automaton (DFA) is the simplest model of computation.

Any DFA can be completely described by the following 5-tuple:

(Q?ZaQO7F7 5) (12)

where,

() = Finite set of states
3 = Set of input symbols
go = Initial state

F = Set of final states

0 = Transition function, i.e. § : Q X ¥ — @

For example, consider the following FSM:

start — 1

0,1

Figure 1.2: FSM

Here,
610 1
Q={A,B,C} Al B C
¥ ={0,1} B|A B
qgo=A c|C C
F={B}

6:{A,B,C} x{0,1} = {A,B,C}

1.3.1 Acceptance of a String by a DFA

A string w is said to be accepted by a given DFA if the following two conditions are satisfied:
e The entire string is traversed completely from start to finish.

e The automaton goes to a final state after complete traversal of w.

1.3.2 Minimisation of DFA

A DFA always corresponds to a unique language but the reverse is not always true i.e. a single

language may correspond to multiple different DFAs.

Page 6 of

The running time and space requirements of the implementation of DFA depend on it’s states.

Hence, in order to reduce these requirements, we perform minimisation of the DFA.
There are two methods to perform minimisation of a DFA:

o K-Equivalency Method

o Myhill-Nerode Theorem (Table Filling Method)

1.3.3 K-equivalency Method of reducing DFA
K-equivalency

A pair of states (g¢;,¢q;) are said to be k-equivalent if 6(g;, w) and 6(g;, w) both produce final
states or both produce non-final states for all strings w € ¥* of length k or less.

Process of minimisation
Considering the DFA to be defined as in eq.
1. All the states are O-equivalent. Mark this partition of @ as Sjy.
2. Now partition @ as follows: {@Q — F, F'}. This is the first equivalency 5.

3. Apply all the inputs separately on the two subsets and find the next state combinations. If
it happens that, for applying input on one set of states, the next states belong to different
subsets, then separate the states which produce next states belonging to different subsets

forming new partition.
4. Continue these steps n + 1 times, where n is the number of states of DFA i.e. |Q|.
5. If S, and S,,+1 are the same, then stop and declare S, as an equivalent partition.

6. The equivalent partition will contain subsets whose contents on combining will form the

new states of the minimised DFA

e.g. Minimise the following DFA:

1

< > 0
start —
0 0
1 0 1
1
1

We first find the table for the transition function for this automaton.

510 1
—-A| B C
B|B D
c|B C
D|B FE
E*| B C

Page 7 of

Let us find the k-equivalencies of this DFA

0-equivalency = {{A, B,C, D, E}}
1-equivalency = {{A, B,C, D},{E}}

Since A and D go to different subsets of the partition on the input 1, D is to be separated.
d(A,1) - C and 6(D,1) — E.

2-equivalency = {{4, B,C},{D},{E}}

Since A and B now go to different subsets of the partition on the input 1, B is to be
separated. 6(A4,1) — C and §(B,1) — D.

3-equivalency = {{A4,C}, {B},{D},{E}}

Now, no more changes in the partition occurs after this, so we can end the process early

and say that S3 is an equivalent partition.

To find the minimised DFA, we must first find the transition table and then convert it to

a DFA. (Ans.)
0 0
510 1
— AC | B AC
B|B D
D|B FE
E* | B AC

1.3.4 Myhill-Nerode Theorem

Theorem 1. A language L is reqular if and only if the number of equivalence classes of the

relation R is finite.

Where R is the equivalence relation such that:

Ve, y €X*, 2Ry <= Vz e X" (zz€ L < yze L)

We now use this theorem in order to minimise a DFA.
e.g. Minimise the DFA from the previous example:

Let us construct a |Q| x |@| = 5 x 5 matrix while only keeping entries below the principal

diagonal.
Let us mark off the squares which correspond to any pair if the form (Q \ F, F) with a X.
Now that all such pairs have been marked with an X, we can now go on to the next step:

o Find all pairs («, 3), which lead to a marked pair when the transition function 0 is

applied to the constituents.

Page 8 of

o Mark these pairs with an X as well.

¢ Repeat until no new pairs are marked.

A A

B B

C C

D D

E E| X | X | X|X
A|B|C|D|FE A|B|C|D|FE
A A

B B | X

C C X

D| X |X]|X D| X |X]|X
E X | X | X E X | X | X
A|B|C|D|FE A|B|C|D|FE

Figure 1.3: Table Filling Method

Now find the squares corresponding to the pairs which are not marked yet, the states

corresponding to these squares are to be combined in a single state.
We get the set of states in the minimised DFA to be {AC, B, D, E}.

We now continue ahead in the same way as we did for the k-equivalency method. Finding

the transition table for the system and then finding the minimised version of the DFA.

1.4 Regular Languages

A language L is said to be regular if and only if some FSM can recognize it. Regular Languages

are the languages formed from “Regular Grammar”.

1.4.1 Operations on Regular Languages
We have the following operations on regular languages:
Union AUB = {z|lzx € AVz € B}.

Concatenation Ao B := {zy|xr € ANy € B}.
Kleene’s Closure A* :={xj2o... 25|k > 0Az € A}.

For example, Let A = {rq, s} and B = {mn, o}

. AUB ={rq,s,mn,o}
.. Ao B = {rqgmn,rqo,smn, so}

LAY =Ae rq, s,mqrq,Tq8, 819,88, ... }

Page 9 of

Theorem 2. The class of all reqular languages is closed under union, i.e.
VAe LVBeLAUBeL
Theorem 3. The class of all reqular languages is closed under concatenation, i.e.

VAeLVBeL AoBeL

1.5 Non-Deterministic Finite Automata

Any Non-Deterministic Finite Automaton (NFA) can be completely described by the following
5-tuple:
(Q7 Ev q0, F7 5)

where,

Q = Set of states
Y. = Set of inputs
qo = Initial state
F = Set of final states
d = Transition function, i.e. §: Q X ¥ = P(Q)

The main difference between an NFA and a DFA is the fact that the next state from a given
state and input is random. In a DFA, the next state for a given pair of current state and input

symbol is clearly defined and is deterministic in nature.

On the other hand, NFAs are non-deterministic by nature. By definition, there are a variety of

states it can choose to go to from any given state and input.

e.g. Consider the below NFA. It accepts all strings which end with an 0. As we can see, there
are two possible states where we can go to from the state A on the input of 0, A itself and

B. We can also see that from B, there is no state to go to.

0,1 5] 0 1

0
start — B

The corresponding DFA for the above NFA is given below

5N

1 0

start —

It is not really intuitive to understand what this DFA does at a glance. This is the main

advantage of an NFA, specifying automata for languages in an easier and faster way.

e.g. Find out if the string “0010” is accepted by the given NFA.

Page 10 of

0 1
()
start —
1 0 0
:

We can determine whether the given string is accepted by the NFA or not. We first draw

all the possible paths which are taken by the string in a “transaction diagram”.

0
0 @
0

start — q1 q1 q2

1 0
)
0
q2 q2
(D ()

After drawing the diagram, we check the set of final states. If even one of the state in this

set is an accepting state, then the string is accepted by the NFA. In this case, the set of
final states is {qo, g1, g2}, the accepting state ¢ is a part of this set, so it means that “0010”
is accepted by the NFA. (Ans.)

1.5.1 eNFA

If any finite automaton contains a null move or an e-transaction, then that finite automaton is
called NFA with € moves.

Note:
An e move is a move which does not contain any input characters. For representation purposes,

we make use of € to show the fact that there are no characters in the input. An epsilon move

would be represented by "" in a programming language like C.

Page 11 of

An e-NFA can be defined as a regular NFA but with the input alphabet containing an e character

as well.

1.5.2 Conversion to DFA

An NFA can be easily converted to a DFA as follows:

1.
2.

Find the transition table for the given NFA
Create a new table for the DFA to be formed.

The first entry in the new table will be the initial state of the NFA. Copy this row as it is
from the NFA to the DFA.

If any new states are added in the next state column then add them as an entry to the
current state column. If the next state is a compound state i.e. a set of states, then the

next state for this compound states will be a union of the states in that column.

Repeat the previous step until no new combination of states appear in the next state

column.

The accepting states are those which contain at least one of the accepting states of the
NFA in them.

1.6 FSM with output

These are finite automata without output but with output. A major difference between the two

is that these automata do not “accept” strings, instead they produce output strings of their own.

Consequently, these machines do not have a set of “final” or “accepting” states.

1.6.1 Mealy Machines

The Mealy Machine was proposed by George H. Mealy at the Bell Labs in 1960.

Mealy Machines are one type of finite automata with output, which produce a distinct output

character for a given pair of current state and input character on top of producing a next state.

Any Mealy Machine can be completely described by the following 6-tuple:

(Q7 27 A? q0, (Su)\)

where,

() = Finite set of states

3} = Set of input symbols

A = Set of output symbols

qo = Initial state

6 = Transition function, i.e. :QXY—-Q

A = Output function, i.e. A XY= A

1.6.2 Moore Machines

The Moore Machine was proposed by Edward F. Moore in IBM around 1960.

Page 12 of

Moore Machines are one type of finite automata with output, which produce a distinct output

character for a given state.

Any Moore Machine can be completely described by the following 6-tuple:
(Q7 25 A? q0, 67)‘)
where,

(Q = Finite set of states
3 = Set of input symbols
A = Set of output symbols
qo = Initial state
6 = Transition function, i.e. :QXXY—=Q

A = Output function, i.e. A:Q— A

1.6.3 Representations of Mealy and Moore Machines

The tabular representation of Mealy and Moore Machines are pretty straightforward.

) 0 1 010 1

Q A Q A Q A
Al B a A b Al B Al a
B|B b A a B| B A|b

The graphical representation of Mealy and Moore Machines contain the output symbol/character

written next to the state transition or the state itself.

1/b 0/b 1 0
O/a/ 0
OB OISO S ()
1/a 1

1.6.4 Interconversion of Mealy and Moore Machines

We can perform interconversions between Mealy and Moore Machines in such a way that the

output string produced when an input string is given remains the same for both the machines.

Moore to Mealy

We can convert a Moore Machine to a corresponding Mealy Machine very easily from it’s graph-

ical representation.
We take the output character of the state and put it on the transitions coming to that state.

e.g. Convert the given Moore Machine to a Mealy Machine

Page 13 of

1/a 0/b
0 0/b
—
start — start —
1 1/a

(Ans.)

Mealy to Moore

We can convert a Mealy Machine to a corresponding Moore Machine easily using it’s tabular

representation.

We try to coalesce the outputs from the transitions to the output of the states, and if any

discrepencies arise, we create new states, duplicating the outgoing transitions from these states.

e.g. Convert the given Mealy Machine to a Moore Machine

6 0 1
6 0 1 Q A
Q A Q A A, | B, C | a
A|B a C a — Ay | B, C | b
B|B b C a B, | By, C | a
C|A a B b By, | By, C | b
C | A, By | a

(Ans.)

Solved Examples

Q.1. Construct a DFA that only accepts (binary) strings which start with the symbol ‘0’

. L =1{0,00,01,000,001,010,011, ...}

(Ans.)

Q.2. Construct a DFA that accepts all (binary) strings of length 2 only.

. L =1{00,01,10,11}

Page 14 of

0,1 0,1 0,1
start @ 0,1

(Ans.)
Q.3. Construct a DFA accepting words from a language with words only containing ‘0’ over the
alphabet ¥ = {0, 1}.
.. L =4{0,00,000,0000,...}

(Ans.)
Q.4. Draw a DFA which will accept even binary number strings.
.. L =140,10,100,110,1000,...}
1 0
0
start *>
1
(Ans.)
Q.5. Draw a DFA to accept all strings starting with abb over the alphabet {a, b}.
.. L = {abb, abba, abbb, abbaa, . . . }
a b b
OB OPBOMO:T
b a a
a.b
(Ans.)

Q.6. Design an NFA for the transition table as given below.

Page 15 of

0 0 1

q0 qo0,q1 q0, 42
q1 q3 €
q2 | 42,43 qs3

q3 q3 q3

where ¢q is the initial state and g3 is the accepting state.

G
E OO

0,1

(Ans.)
Q.7. Design an NFA over ¥ = {0, 1} which accepts all strings ending with “01”.
0,1
(Ans.)

Q.8. Design an NFA which accepts strings over {0, 1} where double 1 is followed by double 0.

0,1

0,1

(Ans.)
Q.9. Design an NFA in which all the string contain a substring “11107.
0,1 0,1
1 1 1
(Ans.)

Practice Problems

1. Create the following NFAs which:

Page 16 of

(a) Accepts strings starting with ‘0’.
(b) Accepts strings ending with “01”.
2. Convert the given NFA to a DFA:

a,b

start —(A b @ b @

3. Minimise the following DFAs:

(a) The transition table for the DFA is as follows:

q0
q1
q2
q3
q4
a5
L[]
q7

Where qq is the initial state and ¢ is the final state.

(b) The graphical representation of the DFA is as follows:

0
q1
d6
q0
q2
a7
a2
de
de

ds
a2
q2
de
ds
d6
q4
q2

start —(A

4. Construct the following Mealy Machines:
(a) Produces the 1’s-complement of any binary string.

(b) That prints ‘e’ whenever the sequence “01” is encountered in any input binary string

and convert it to a Moore Machine.

5. Construct the following Moore Machines:

(a) That counts the occurrences of the sequence “abb” in any input strings over {a, b}.

(b) That prints ‘e’ whenever the sequence “01” is encountered over strings from ¥ = {0, 1}

and then convert it to a Mealy Machine.

6. Convert the given Moore Machine to a Mealy Machine.

Page 17 of

610 1

Q A
G | g2 |1
G193 g2| 0
@@ ¢ |l
3 | g g3 | 1

Where qq is the initial state.

7. Convert the given Mealy Machines to equivalent Moore Machines

0/a
start — 0/b

1/a 0/a 1/a
1/b
(a)
0/0 0/1
start — L1 Q 1/0
(b)
a/l
a/0
start *> a/0 b/0
b/0
b/1
()

Page 18 of

Chapter

Language and Grammar

2.1 Formal Grammar

A grammar is a set of rules to define a valid string in any language. A language is not complete

without a grammar.

Grammar is defined as the 4-tuple:
G=(V,%,PNS)
where,

V' = Set of non-terminal symbols
>} = Set of terminal symbols
P = Set of prouction rules

S = Start symbol (the symbol from which the grammar starts generating strings)

A language is generated from the rules of a grammar. A language contains only terminal symbols
(€ X). Let a language L be generated from a grammar G. The language is written as L(G) and
read as the language generated by the grammar G. The grammar is called G(L) and read as

the grammar for the language L.

The production rules of a grammar consist of two parts. The left side of a production rule
mainly contains the non-terminal symbols to be replaced. The right side of a production rule
may contain any combination of terminal and non-terminal symbols (even null). To be a valid

grammar, at least one production rule must contain the start symbol S on its left side.

In most of the cases, a grammar is represented by only the production rules, as the symbols are
understood. Sometimes in production rules, two or more rules are grouped into one. For those

cases, the left side of the production must remain the same and the right side rules are separated

Page 19 of

by the ‘|’ symbol. As an example,

A — aA,
A — bCa, are grouped as A — aA|bCa| ab.
A—ab

2.1.1 Chomsky Hierarchy

The Chomsky hierarchy is an important contribution in the field of formal language and au-

tomata theory.

Figure 2.1: Chomsky Hierarchy

Chomsky classified the grammar into four types, depending on the production rules.

Type 0 Type 0 grammar is a phase structure grammar without any restriction. All grammars

are type 0 grammar.

For type 0 grammar, the production rules are in the format of
{(Lco)(NT)(Re)} — {String of terminals and/or non-terminals}

where L. = Left context, R, = Right context and NT = Non-terminal.
Type 1 Type 1 grammar is called context-sensitive grammar.

For type 1 grammar, all production rules are context-sensitive if all rules in P are of the

form
aAp — ayp

where A € NT, o, € (NTUX)", and y € (NTUX)™.

Type 2 Type 2 grammar is called contezt-free grammar. On the left side of each production,

there will be no left or right context.

For type 2 grammar, all the production rules are of in the format of
NT — «

where [NT| =1 and a € (NTUT)" (T refers to the set of terminal symbols).

Type 3 Type 3 grammar is called reqular grammar. Here, all the productions will be in the

Page 20 of

https://youtu.be/37nwLhIA1zs
https://youtu.be/37nwLhIA1zs

following forms:

A—aor A— aB

where A,B € NT and a € T.

The table below shows the different machine formats for different languages.

Grammar Language Machine Format

Type 0 Unrestricted language Turing machine

Type 1 Context-sensitive language Linear bounded automaton
Type 2 Context-free language Pushdown automaton
Type 3 Regular language Finite automaton

Table 2.1: Machine Formats for Grammars in the Chomsky hierarchy

2.1.2 Regular Grammar

Regular grammar is the type of grammar which can be evaluated by the Finite Automata. They

have the production rules in the form of: A — a or A — aB.

2.2 Regular Sets

A Regular Set or Regular Language is the language formed by a Regular Grammar.

2.2.1 Basic Operations

Consider two regular grammars R; and Ry with the set of terminal symbols 3.

e Union: The language generated by the set L(R;) U L(R3) is denoted by L (R; + Rs). The

strings in this set are generated either by R; or Rs.

o Concatenation: The language generated by the set L(R;) N L(Rs) is denoted by L (R; R2).
The strings in this set are the strings generated by R; followed by the strings generated
by RQ.

o Kleene’s Closure: The Kleene’s Closure (or Kleene’s Star) is defined as the operation of

repeated union and concatenation as follows:
LR)=L(e+R+R*+R*+---)=1L <ZR”>
n=0

where

L(R") = The Kleene’s Closure of R
€ = The empty string.

R’ = The repeated concatenation of R with itself 7 times.

Page 21 of

We define the operator precedence as follows to avoid having to write brackets everywhere as
follows:

Kleene Star = Concatenation = Union

2.2.2 Closure Properties

A set is said to be closed under some operation if the output of the operation on elements of the

set produces an element in the set itself.

1. Closure under Union: Consider two regular sets L(R;) and L(R3) and two DFA M; and
M5 which accept them respectively.

Proof. Let us construct a finite automaton M’ which will accept strings from both lan-

guages.

Q' = Q1) U Qa2 U{gp}
==
Fl'=FUF
qi is a new state which is initial state of either machine.
8 Q' x ¥+ F'such that
&' (40, €) = {qo1, qo2}
' (qo1, %) = d1(qo0, %1)
&' (qoz2, X") = d2(qo, X2)

The above defined automaton M’ accepts strings either from L(R;) as well as L(R3).

Since there exists an automaton which accepts strings from the union of the regular sets,

the regular sets are closed under the Union operation. O

Note:

Here, the smaller indices in brackets are used to indicate that the states are being relabelled

to avoid confusion.

2. Closure under Complement: Consider a regular set L(R) and a DFA M which accepts it.

Proof. Let us construct a finite automaton which will accept the complement of this set
ie. L(R)® =% — L(R)

If we just flip the states which are accepting in nature and which are not, then we get the
finite automaton which accepts L(R)C i.e. Fap = Q — Fiy

Since there exist a finite automaton which accepts strings from the complement of regular

sets, the regular sets are closed under the Complement operation. O
3. Closure under Concatenation: Consider two regular sets L(R;) and L(Rz).
Proof. By D’Morgan’s Theorems, we can prove that:

L(R1Rs) = L(R1) N L(R»)

_ (L(Rl)c UL(RQ)E)C

Page 22 of

Since the complement and union operations on a regular language form regular languages

as well, the result of a concatenation operation is also a regular language. O
Closure under Kleene Star: Consider a regular set L(R) and a DFA M which accepts it

Proof. Let us construct a finite automaton which will accept the Kleene Star of this set.

ie.

e

Since the union and the concatenation operations on a regular language form languages as

well, the result of a Kleene Star operation is also a regular language. O

2.3 Regular Expressions

Regular Expressions (RE) provide a way to represent regular languages and their corresponding

grammar in a compact way using a single expression.

e.g.

e.g.

Let L(R;) be a regular set which denotes the set of strings over {a,b} which contains an

odd number of a’s followed by an even number of b’s.

Instead of specifying each element of the set in roster form or using set builder form, we

can make use of a regular expression such as a(aa)*(bb)*
Let Ry be a regular grammar which denotes the set of even length palindromes over {0,1}

Instead of stating the tuple for Ry or only it’s production rules, we can instead use the

regular expression: ww”, where w = (a + b)”

2.3.1 Identites

An identity is a relation that is tautologically true. The following are some identities that are
true for all RE.

1. 2+ R=R+2=R

Proof.

J+R=0UR

={}UR=R
O
Similarly, R+ @ = R.
2. DR=Ro =0
Proof.
JR=0ONR
={}NR=w

Page 23 of

Similarly, R& = @.
3. eR=Re=R
Proof.

eR = Empty string concatenated with any symbol of R
= That same symbol of R =— eR=R

Similarly, Re = R.

4. € =€
Proof.
€ = {e, €€, cee, ... }
={e,c,e,...} (- eR=R)
:{6}:6
o =¢€
Proof.
o=+l +2?+...
=+ P+ +--
=€ (.R+92=R)
5 R+ R=R
Proof.
R+ R = Re+ Re (- Pe=P)
= R(e+¢)
=R
6. R*R* = R*
Proof.

R*R* ={¢,R,RR,... }{¢, R,RR, ...}
= {ee,eR,eRR,...,Re, RR,RRR, ...}
={¢,R,RR,...} (. eP=Pe=P)
— R

Page 24 of

7. R"R = RR*

Proof.
R*R={¢,R,RR,...}R
= {eR,RR,RRR,...}R
={R,RR,RRR,...}R (.. eP=P)
= R{¢,R,RR,...}
= RR*
8. (R*)" = R*
Proof.

(R*)" = {e, R, R*R*,...}

— {e,R*,R",...} (- P*P* = P*)
= {e, R"}

= {ey U{R"}

=e+ R

=R" (re+P=P)

9. e+ RR*=¢+ R*R=R*
Proof.

e+ RR"=¢+ R{¢,R,RR,...}
=e+ {Re, RR,RRR,...}

=e¢+{R,RR,RRR,...} (- Pe=P)
={¢,R,RR,RRR,...}
- R*
Similarly, e + R*R = R*.
10. (PQ)"P = P(QP)"
Proof.
(PQ)"P = {¢, PQ, PQPQ, PQPQPQ,...}P
= {eP, PQP, PQPQP, PQPQPQP,...}
={P, PQP,PQPQP, PQPQPQP,...} (. eR=R)
= P{e,QP,QPQP,QPQPQP,...}
= P(QP)"

Page 25 of

O
1. (P+Q)" = (P*Q*)" = (P*+Q")" (De Morgan’s Theorem)
12. (P+Q)R= PR+ QR

2.3.2 Arden’s Theorem

The Arden’s theorem is used to construct the RE from a transitional system of FA.
Theorem 4. Let P and Q be two RE over ¥. If € ¢ P, then the equation has a unique solution
R=QP*.
Proof. Given that,
e P and @ are two RE.
e ¢ P.
We need to prove,
e R=QP*is asolution to R = Q + RP.
e R = QP is the only solution to R = @Q + RP.
Substituting R = QP* in @ = @ + RP, we get

R=Q+RP
.QP*=Q+QP*P
S QP* =Q(e+ P*P)
SQPT =QP" (re+ R'R=R"

Therefore, R = QP* solves the equation R = @ + RP.
Given that R =Q + RP,

R=Q+RP
R=Q+(Q+ RP)P
=Q+ QP+ RPP
= Q(e+ P)+ RP?

(
(e+P)+(Q+ RP)P?
(e + P)+ QP? + RPP?
(e+ P+ P*) + RP?

Q
Q
Q

After several steps, we obtain
R=Q(e+P+P?+-.-+P")+ RP".

Consider a string w € R. If w =¢, then w € Q(e + P+ P?> +--- + P") or w € RP"1.
e ¢ P, w must belong to Q(e + P + P2 + .-+ P"), which is effectively QP* as n — oo.

As any string w belongs to only one part, R and QQP* represent the same set. This means that
R = QP* is the unique solution of the equation R = Q + RP. O

Page 26 of

2.3.3 Conversion to Finite Automata

Regular expressions are another way to represent the Regular Grammar. We can use them to

form Finite Automata.

There are two major methods to forming finite automata from regular expressions: the top-down

and the bottom-up approach. We only discuss the top-down approach here.

Top Down Approach

In this method we start from a simple finite automaton accepting the entire RE and keep breaking

() R.E. @
start —

The different operators are broken down in the following ways

OO O——@
Ono OO0
O——0
o oT=o

Using these three methods, we can break down a complex RE to it’s constituent parts and form
an e-NFA. We then use the e-closure method to form a DFA.

it down.

2.3.4 Conversion from Finite Automata

Regular expressions are another way to represent the Regular Grammar. We can form them

from Finite Automata.
Each state in a finite automaton forms a regular expression.

Suppose a given state g, has the predecessors g,_1 coming to it from the transition §(g,_1,9) —

Ga- Then we can find the regular expression for the state g, as follows:

RE(ga) =) | RE(ga—1) - ¥

To avoid notational complexity, we directly write the name of the states in the R.H.S. of the

equation.

RE(Qa) = ZQa—l X (2'1)

e.g. Construct a Finite Automaton equivalent to the Regular Expression:

L = ab(aa + bb)(a + b)*b

Page 27 of

Step I: Take a beginning state A and a final state Z. Between the beginning and final state,

place the given regular expression.

ot H@ ab(aa + bb)(a + b)*b @

Step II: Since there are three ()s in between, we add three intermediate states.

D)) =) ()

Step III: Between a and b there is another (-), so we add another intermediate state, we also

add parallel paths between B and C' in order to remove the +.

Step IV: We now break up the double letters aa and bb taking intermediate states. We also

break the Kleene Star operation.
a,b
a a
D] (D
start —
10t b

Step V: We can now use the e-closure method or the transitional method in order to remove

the e transitions.

a,b
a a
-GGG 1O
b b

We have formed an NFA, we can easily convert it to a regular DFA and find the finite

automaton which accpets the given RE. (Ans.)

e.g. Given the following FA give the regular expression which represents the language accepted
by it.

Page 28 of

0
start —{ 4o q1 q2

0,1

For the above given DFA, the equations for each state are as follows:

e RE(g3)=q3=q0-1+q2-0+¢g3-0+¢g3-1
For qq, it only depends on the start input which is € so the RE for this state is e.

For ¢1, it depends on g and ¢; (by a self loop) . Let us substitute the value of gg over here.

qg1=¢q-0+q -0
=€ 04+q¢ -0
g1 =0+q1-

0
2 From (theorem [})
q = 00"

Similarly for gs, it depends on ¢ and ¢o (by self loop). Let us substitute the value of ¢;

over here.

@2=q 1+g-1

=00"-14+¢g-1
g2 =00"1+¢2-1
: ° \>From (theorem [}))
g2 = 00*11*

Finally, for ¢3, it depends on qg, g2 and g3 itself by a self loop. Let us substitute the values

of g and go over here.
3=¢q1+¢ -0+g3-(0+1)
=€-14+00"11*-0+g¢3-(0+1)
g3 = (1 4+00*11*0) + g3 - (0+ 1)

From (theorem
g3 = (14 00*11*0)(0 + 1)* 2 i

Since, ¢3 is the accepting state, the regular expression of g3 is the representation of the
language accepted by the FA. ‘q?, = (1+00%1170)(0 +1)* (Ans.)

Page 29 of

2.4 Equivalence of two Finite Automata

Two Finite Automata are said to be equivalent in in nature if they generate the same equivalent
RE. Alternatively, two FA are said to be equivalent in nature if on minimisation, they produce

the same number of states and same transitional function ¢.
We can easily check if two finite automata are equivalent in nature by the following procedure:

1. Given two FA, M; and Ms, with the start symbols s; and so, ensure that they have the

same number of input symbols.
2. Draw a table with [X| 4+ 1 columuns.

3. The row of the first column will contain the ordered pair (s1, s2). The columns will contain
the ordered pairs of states which we will go to after applying the transition §(s;,) to the

states in the first column in that row.

4. If any new ordered pairs appear in the final || columns, then place it in the first column

of the next row and repeat the process until no new ordered pairs arrive.

5. If at any point in the process, an ordered pair of the form Q1 — Fy, Fy or Fi,Qs — Fb
appears then declare the two FA to not be equivalent. If this does not happen then declare
the two FA to be equivalent.

e.g. Find out whether the given FA are equivalent or not.

0,1
O
0 0
start —(A 1 c 1 @ 1 @
0 0,1 0

0 0,1
0,1 1

We start the process of finding if the two automata are equivalent or not by creating a table

with 3 columns.

e =(¢,4') | 9(4e,0) (ge, 1)
(A,G) | (B,H) (C,H)
(B,H) | (C,H) (D,I)
(C,H) | (C,H) (B,
(B, 1) (E,I) (B,
(D, 1) (D,I) (D,I)

As no new combinations appear, we stop the process over here. We do not encounter any

Page 30 of

ordered pairs of the form where one of the entries is non-final state and the other is a final

state. This means that the two FA are equivalent in nature. (Ans.)

2.5 Pumping Lemma

The pumping lemma is a necessaryﬂ condition for a string to belong to a regular set. Therefore,
it can be used to disprove a language to be regular if it does not fulfill the conditions of the
lemma.

Lemma 1. Assume that set L is reqular. Let n be the number of states of the FA accepting L.
1. Every w € L with |w| > n can be written as w = xyz, for some strings ryz.
2. |yl = 1.
3. |zy| < n.
4. xylz € LYi>0.
Q.1. Show that L = {a?|p is prime} is not regular.
Proof. Assume that L is regular. Let n be the number of states in the FA accepting L.

Suppose p is a prime number greater than n. Let the string w = a? € L. One deduction

is that the length of every string in L is prime, i.e. Vw € L|w| is prime.

By the pumping lemma, we can write w = xyz with |zy| < n and |y| > 0. Suppose y = a™

for some m with 1 <m < n.
Now, for zy'z,

|2y’ 2| = |wyz] + [y

=p+ -1yl
‘xyzz’ =p+(G—1)m

Suppose the case for i = p + 1. Then, |xyzz| =p+pm=p(l+m).

However, p(1 + m) is not a prime number as it has factors p and (1 + m) other than 1
and p(1 + m) itself. This implies zy’z ¢ L and by contradiction, L cannot be a regular
language. O

IThe pumping lemma is not sufficient for a language to be regular. If a language fulfils the conditions of the
pumping lemma, it still might not be regular.

Page 31 of

Chapter

Context-Free Grammar

3.1 Definition

3.1.1 Context

According to the Chomsky hierarchy, Context-Free Grammar (CFG) is type 2 grammar.

Before describing why this type of grammar is called context-free, we have to know the definition

of context. Production rules are usually of the following form:
{String comprising at least one non-terminal} — {String of terminals and/or non-terminals}

If any symbol is present with the producing non-terminal on the left side of the production rule,
then that extra symbol is called contert. In CFG, at the left side of each production rule, there
is only one non-terminal (no context is added with it). For this reason, this type of grammar is

called context-free.

3.1.2 Formal Definition

In formal language theory, a Context-Free Language (CFL) is a language generated by some
CFG. The set of all CFLs is identical to the set of languages accepted by a Pushdown Automaton
(PDA).

A CFG is defined by the following 4-tuple:

G:=((V,¥,PS)
where,
V' = Set of variables or non-terminal symbols
3} = Set of terminal symbols

P = Set of Prouction rules

S = Start symbol

Page 32 of

3.1.3 Production Rules

A production rule (or production) defines how terminal and non-terminal symbols can be com-

bined to form strings. It is given by:

where,

A= a

e A is a non-terminal symbol from the set V.

e a is a string of symbols from the set {V UX}", meaning it could be a combination of

terminal and non-terminal symbols.

For example, consider a language that generates equal numbers of a’s and b’s in the form a™b".
The CFG can be defined as:

3.1.4 Differences from Regular Grammar

G = ({S,A},{a,b},{S = aAb, A — aAb|e})

Grammar

Type

Regular Grammar

Context-Free Grammar

Class

Production
Rules

Complex-

ity

Accep-

tance

Generates Regular Languages, which
can be recognized by FA. Regular gram-
mars are limited in complexity and
cannot generate languages that require

memory beyond an FSM.

The production rules are more restric-
tive. They take the form:

A—aB or A—a

where A is a non-terminal, and a is a
terminal symbol. The non-terminal is
allowed only on the right side of the pro-
duction rule, and it is limited to right-

linear or left-linear forms.

Only handles simpler language struc-
tures, such as strings that can be rec-
ognized by FSM. For example, regu-
lar languages cannot handle matching
numbers of parentheses or nested struc-

tures.

Accepted by FA, which have no memory

other than the current state.

Generates CFLs, which can be recog-
nized by a PDA and can handle more
complex languages that require a stack-
based memory model, such as matching

parentheses.

The production rules are more flexible

and can take the form:
A— «

where A is a non-terminal, and « can
be any string of terminals and non-
terminals. This allows CFGs to gener-
ate more complex structures like nested

or recursive patterns.

Can handle more complex constructs
like balanced parentheses, palindromes,
and other recursive patterns that re-
CFGs can

generate programming languages’ syn-

quire stack-like memory.

tax and expressions.

Accepted by PDA, which has a stack
for memory and can thus handle more

complex language constructs.

Page 33 of

3.2 Derivation Tree

A Derivation Tree (or Parse Tree) is a diagram that represents how a string of symbols can
be derived from a CFG. It visually illustrates the process of applying the production rules of a

grammar to form a string.
Root Vertex The root of the tree must always be labeled with the start symbol S.

Vertices These nodes represent non-terminal symbols. They are symbols used to define other

symbols or structures in the grammar.

Leaves The leaves of the tree are labeled with terminal symbols or €. Terminal symbols are the

basic symbols that cannot be replaced further and are part of the final derived string.

3.2.1 Left Derivation Tree

A Left Derivation Tree is a tree formed by applying production rules to the leftmost variable

(non-terminal symbol) in each step.

A derivation is called a leftmost derivation if we replace only the leftmost non-terminal by some

production rule at each step of the generating process of the language from the grammar.

3.2.2 Right Derivation Tree

A Right Derivation Tree is a tree formed by applying production rules to the rightmost variable

(non-terminal symbol) in each step.

A derivation is called a rightmost derivation if we replace only the rightmost non-terminal by

some production rule at each step of the generating process of the language from the grammar.

Q.1. Find the parse tree for generating the string 0100110 from the following grammar.

S —0S|144
A= 0||1A|0B
B —1|0BB

For generating the string 0100110 form the given CFG, the leftmost derivation will be

S —08 - 014A — 010BA — 0100BBA — 01001 BA — 010011A — 0100110

S
/\
0o S
/TN

0

/TN

B
|
0 B B
|
1 1

Page 34 of

For generating the string 0100110 form the given CFG, the rightmost derivation will be

S — 08 - 0144 — 0140 — 01080 — 0100BB0 — 0100810 — 0100110

S
/\
0o S
/TN

0

/TN

B
|
0 B B
|
1 1

3.2.3 Ambiguous Grammar

A grammar is said to be ambiguous if there exist two or more derivation trees for a string w

(i.e., two or more left derivation trees).

Consider generating the string aaa from the following grammar:

S aS|AS| A
A— AS|a

We have two ways to generate the string as follows (using leftmost derivation):
1. S = aS — aAS — aaS — aaA — aaa
2.8 —A—AS - ASS — aAS — aaS — aaA — aaa

In relation to ambiguity in CFG, there are few more definitions.

Ambiguous CFL A CFG G is said to be ambiguous if there exists some w € L(G) that has at

least two distinct parse trees.

S

/\ 4
a S

/\ A

A
a

f—n»—W0
f—n—U0

Figure 3.1: Ambiguous grammar

Page 35 of

Inherently Ambiguous CFL A CFL L is said to be inherently ambiguous if all its grammars

are ambiguous.

Unambiguous CFL If L is a CFL for which there exists an unambiguous grammar, then [is

said to be unambiguous.

3.3 Simplification of CFG

When working with CFG, some rules and symbols are unnecessary for generating valid strings.

These unnecessary parts make the grammar more complicated than it needs to be.
To make the grammar simpler and more efficient, we remove:
1. Useless rules or symbols that do not help in generating valid strings.

2. Null (¢) productions, which allow a variable to disappear without contributing to the

output.

3. Unit productions, which are rules that simply replace one variable with another without

adding new information.

3.3.1 Elimination of useless variables
A variable Y is useful iff both the following hold:
1. Y must produce at least one terminal.
2. Y must be reachable from S via some series of productions (S ~ Y).

Even if one of the above conditions are false, the variable Y is declared useless and discarded as

follows:
e If Y is present on the right of a production, then discard the sub-production.

e If'Y is present on the left of a production, then discard the entire production.

3.3.2 Removal of Unit Productions

A unit production is of the form A — B, where A € V A B € V (non-terminals). The procedure

for removal of unit productions is as follows:
To remove A — B,

1. Add a production A — x to the grammar rules for all occurrences of B — x in the

grammar, where z € {V UX}".

2. Delete A — B from the grammar.

3.3.3 Removal of Null Productions

In a CFG, a non-terminal symbol A is said to be nullable if there exists a production A — ¢ € P

or there is a derivation that starts at A and eventually leads to ¢ (A — --- — e or A ~).
To remove A ~ ¢,
1. For all productions whose right side contains A, replace each occurrence of A with e.

2. Add the resultant productions to the grammar.

Page 36 of

3.3.4 Chomsky Normal Form

A CFG is said to be in Chomsky Normal Form (CNF) when the elements on the right side of

each production in the grammar are either two variables or a terminal.

VpeP,p=A—->BCVp=A—a
where A,B,C € V and a € X.

Converting a CFG to CNF

A CFG can be converted to a CNF by the following algorithm:

Algorithm 1: Converting a CFG to a CNF
Step 1: If the start symbol S appears on the right-hand side of any production, create

a new start symbol S’ and add the production S’ — S.
Step 2: Remove all null (¢) productions from the grammar.
Step 3: Remove all unit productions (productions of the form A — B where both A
and B are non-terminals).
Step 4: For each production of the form A — By Bs ... B, where n > 2, replace it by:
e« A— BC,
e where C — B>...B,,
and repeat this step until all productions have at most two non-terminals on their right.
Step 5: For any production of the form A — aB, where a is a terminal and A, B are
non-terminals, replace it by:
e A— XB, and
e X —a,

and repeat for all such productions.

3.3.5 Greibach Normal Form

A grammar is said to be in Greibach Normal Form (GNF) if every production of the grammar
is of the form
A—aX

where a € ¥ and X € V*.

In other words, each production must contain exactly one terminal followed by any combination

of non-terminals on its right side.
If a CFG can be converted into a GNF, then the PDA accepting the CFL can be easily designed.

Before going into the details about the process of converting a CFG into GNF, we have to define
two lemmas which are useful for the conversion process.

Lemma 2. If G .= (V,X,P,S) is a CFG, and if A — Aa and A — B1| B2 ... | Bn belong to
the production rules (P) of G, then a new grammar G' .= (V,X, P',S) can be constructed by
replacing A — B1]B2]| ... | Bn in A = Aa, which will produce

A= fra|Bral ... | Bra

This production belongs to P’ in G'. It can be proven that L(G) = L(G").

Page 37 of

Lemma 3. Let G = (V,X,P,S) be a CFG and the ‘A’ productions which belong to P be
A‘)AOZ1|AOLQ| |Aam‘ﬁ1|ﬁ2 |6n

Introduce a new non-terminal X. Let G' .= (V', 2, P',S), where V' .=V U{X} and P’ can be
formed by replacing the A productions by

1. 1<i<n
X — (e7]

2. 1<53<m
X — Ole

It can be proven that L(G) = L(G’).

Converting a CFG to GNF

A CFG can be converted to a GNF by the following algorithm:

Algorithm 2: Converting a CFG to a GNF
Step 1: Convert the grammar into CNF by algorithm
Step 2: Rename all the non-terminals of V' as (41, Aa, ..., A,) with start symbol A;.

Step 3: Using lemma |2l modify the productions such that the variable subscript on the
left side of the production is less than that of the starting variable on the right side of
the production. In mathematical notation, it can be said that all the productions will
be in the form A; — A;V where ¢ < j.

Step 4: By repeating applications of lemma [2] and lemma[3] all the productions of the

modified grammar will come into GNF.

3.4 Pumping Lemma

The pumping lemma for a CFL is used to prove that certain sets are not context-free. If a
language fulfills all the properties of the pumping lemma for a CFL, it cannot be said that the
language is context-free. However, the reverse is true: if a language breaks the properties then
it can be said that the language is not context-free.

Lemma 4. Let L be a CFL. Then, we can find a natural number n such that
1. Every z € L with |z| > n can be written as z == wvwzxy, for some strings u,v,w,x,y.
2. |vz| > 1.
3. Jowz| < n.
4. uvkkay € LVkE>D0.
Q.2. Prove L = {a"b"c™ |n > 0} is not a CFL.

Proof. Assume that L is a CFL. Let n be a natural number obtained by using the pumping
lemma.

Let z := a™b™c™. It can be observed that |z| = 3n > n. According to the pumping lemma,

we can write z := uvwzy, where [vz| > 1 and |vwz| < n.
Consider the case for n = 5, where u = aaa,v = a,w = a,x := b,y = bbbbcccce.

If L is a CFL, then by the pumping lemma uv*wz*y € L Vk > 0.

Page 38 of

When k =2, 2 = aaa,_aa__a _bb bbbbcccec = aSb®c® ¢ L, which contradicts the pumping
T —,—
u 02w g2 Y
lemma.

.. L is not a CFL. O
Q.3. Show that L = {ww|w € {0,1}"} is not context-free.

Proof. Assume that L is a CFL. Let n be the pumping length of this language obtained
by the pumping lemma.

Let S := 0"1™0™1™. It can be observed that |S| = 4n > n. According to the pumping

lemma, we can write S := uvzryz, where |vy| > 1 and |vay| < n.

Consider the case for n = 3, where S = 000111000111 and u = 0,v = 0,2 = 0,y =
1,z :=11000111.

If L is a CFL, then by the pumping lemma uv*wz*y € L Yk > 0.

When k£ = 2, S = 0 0 11 11000111 = 0*1%0%13 ¢ L, which contradicts the

0
N ——
u v2 x y2 z
pumping lemma.

.. L is not context-free. O

3.5 Closure Properties

A set is closed under an operation iff the operation on any two elements of the set produces
another element of the set. If an element is produced that does not belong in the set, then the

operation is not closed.

We shall discuss the closure of a CFL under the following operations:

3.5.1 Closed under Union

Let Ly be a CFL for the CFG Gy = (V1,%1, P1,51) and Ly be a CFL for the CFG Gy =
(Va, X9, Py, S2). We have to prove that L; U Lo is also a CFL.

Proof. Construct a grammar G = (V, %, P, S) using the grammars G; and Gs as follows:

VZ:V1U‘/2U{S}
Yi=X1UX
P=P1UP2U{S—>51|SQ}

It is clear that the language set generated from the grammar G contains all the strings that are

derived from Sy as well as S5. Therefore, L1 U Lo is also context-free. O

3.5.2 Closed under Concatenation

Let Ly be a CFL for the CFG Gy = (V1,%1, P1,51) and Ly be a CFL for the CFG Gy =
(Va, X9, Py, S2). We have to prove that L; Lo is also a CFL.

Page 39 of

Proof. Construct a grammar G = (V, X, P, S) using the grammars G; and Gs as follows:

V=VuWu{s}
Y= U
PZ=P1UP2U{S—>5152}

It is clear that the language set generated from the grammar G contains all the strings that are

derived from S; as well as Sy. Therefore, L1 L, is also context-free. O

3.5.3 Closed under Kleene’s Closure

Let L be a CFL for the CFG G := (V, X, P,.S). We have to prove that L* is also a CFL.

Proof. Construct a grammar G’ := (V/, 3, P/, S’) using the grammars G as follows:

V' =V u{S}
P=PU{S - 55 |c}

We have already proved that CFLs are closed under union and concatenatiorﬂ hence L* is also

context-free. O

3.5.4 Not Closed under Intersection
Proof. Consider the following CFLs:

1. Ly == {a™b"c™ |n,m > 0}

2. Ly :={a™b"c" |n,m > 0}

The intersection of these languages is Ly N Ly = {a™b"c™ |n > 0}, which is not context-free (as

it cannot be recognized by a PDA). Therefore, CFL is not closed under intersection. O

3.5.5 Not Closed under Complementation

Proof. Consider two CFLs L; and Ls. For contradiction, let us assume CFLs are closed under

complement.
— LY and LS are also CFLs.

From De Morgan’s law in set theory,

C
LiNLy= (L[f ULS)

".» CFLs are closed under union, and LE’ and Lg are CFLs by assumption, L[f U Lg is also a CFL.

C
By our assumption, (L[f U Lg) must also be a CFLL. = L; N Ly must also necessarily be a
CFL.

However, we already proved that CFLs are not closed under intersection. Hence, our assumption

must be incorrect and thus CFLs are not closed under complementation. O

1Kleene’s closure is basically repeated union and concatenation with the empty string.

Page 40 of

3.5.6 Every Regular Language is Context-free

From the recursive definition of a regular set, we know that @ and € are regular expressions. If
R is a regular expression, then R + R, RR and R* are also regular expressions. A RE R is a
string of terminal symbols. @ and e are also CFLs, and we know that CFLs are closed under
union, concatenation and Kleene’s closure. Therefore, we can say that every regular language is
a CFL.

Page 41 of

Chapter

Pushdown Automata

Stack

A stack is a Last-In-First-Out (LIFO) data structure that allows sequential representation of

input symbols. A stack allows two fundamental operations:
Push A new element is added on top of the stack.

Pop The top element of the stack is read and removed.

a €
PuN /Op
Yy
t
1
d
a
a

Figure 4.1: Stack

4.1 Definition of a PDA

A PDA is a way to implement a CFG. Unlike an FSM, a PDA is more powerful as it has more
memory. A PDA is effectively an FSM with a stack memory.

4.1.1 Components of a PDA

A PDA has the following components:

Page 42 of

1. An input tape,
2. A finite control unit,

3. A stack with infinite size.

Input

Y

Finite Control —— > Accept or Reject

A

Push or Pop

Input Tape Y

Stack

Figure 4.2: PDA

4.1.2 Formal Definition

A PDA is formally defined by the following 7-tuple:

P=(Q,%T,6,q,8, F)

where,

() = Finite set of states
3. = Set of input symbols
I' = Finite stack alphabet
¢ = Transition function
qo = Initial state

$ = Initial stack symbol
F = Set of final states

The transition function 6 : Q@ X (XU {e}) X I' = @ X I'*, i.e. § takes in a triple (g, a, X) where,
e ¢ is the input state in Q).
e a is either an input symbol in ¥ or null (e).
o X is a stack symbol in

The output of J is a finite set of pairs (p,) where,

e p is the output state in Q.

LIf X = ¢, then nothing is pushed onto the stack.

Page 43 of

e < is a string of stack symbols that replaceﬂ X on top of the stack.

4.1.3 Instantaneous Description

The Instantaneous Description (ID) describes the configuration of the PDA at a given instance.

ID remembers the information of the state and the stack contents at a given instance of time.

Formally, an ID is a format of triple (¢, w, k), where ¢ € @ (finite set of states), w € 3 (finite
set of input alphabets), and « € T' (finite set of stack symbols).

4.1.4 Acceptance by a PDA

In each PDA there is a stack attached. At the bottom of the stack, there is a sym,bol called the
initial stack symbol, say $. The symbol $ remains in the stack for most operations.

A string w may be declared accepted by an empty stack after processing all the symbols of w, if
the stack is empty after reading the rightmost input character of the string w. In mathematical
notation, we can say that if M = (Q,X,T,6, qo, 8, F') is a PDA, the string w is declared accepted
by the empty stack if

Jg€Q : (g0, w,$) ~ (q,€,€) where w € X*
In general, we can say a string is said to be the accepted by a PDA if both the following hold:

e The string ends at a final state.

e The stack is empty.

4.1.5 Graphical Notation

The graphical notation of a PDA differs from that of an FSM.

Omo 1
FSM Graphical Notation Figure 4.3: PDA Graphical Notation

A PDA can be represented by both its graphical notation or the set of transitions. Drawing the
graphical notation is preferred, but Overleaf does not provide enough compile time for me to

draw a diagram for every automaton (sed).

4.2 DPDA and NPDA

4.2.1 Deterministic Pushdown Automata

A PDA is said to be a Deterministic Pushdown Automaton (DPDA) if all derivations in the
design give only a single move. In other words, if a PDA being in a state with a single input

and a single stack symbol gives a single move, then the PDA is called a DPDA.

As an example, for L = {a"b™|n > 1}, a DPDA can be designed if the transitional functions

2If 4 = ¢, the stack is popped with no replacement.

Page 44 of

are as follows:

((IO7 7$ q0721$)

6(qo, a, 21 q0, 2121)
8(q1,b, 21 q1,€)
0(qa, €, q1, €) accepted by the empty stack.

) = (
) = (
6(qo, b, 21) = (o, €)
) = (
$) = (
6(q1,€8) = (

qr,$) accepted by the final state.

In the above PDA, in a single state with a single input and a single stack symbol, there is only

one move. So, the PDA is deterministic.

A CFL is said to be a deterministic CFL if it is accepted by a DPDA.

4.2.2 Non-Deterministic Pushdown Automata

A PDA is said to be a Non-Deterministic Pushdown Automaton (NPDA) if one of the derivations
generates more than one move. If a PDA being in a state with a single input and a single stack
symbol gives more than one move or any of its transitional functions, then the PDA is non-

deterministic.

Consider the following example,

Q.1. Design an NPDA for accepting the string {wwR ’ w € {a, b}+}.
The PDA can be defined by the 7-tuple (Q, %, T, 6, qo, $, F'), where:

Q ={q0, 71,0, 49}

Y = {a,b}
I'={8, 2,2}
do = 4o

$=29
F={qr}

The transitional function will be as follows:

5(qo,a, %) = {(q1,219%)}

(g0, b, 8) = {(q1,228)}
6(q1,a,21) = {(q1,2121), (g2, €)}

6(q1,0,21) = {(q1,z121)}
(a1, a,22) = {(q1, 2122)}

6(q1, b, 22) = {(q1, 2222), (42, €)}
(g2, a,21) = {(q2, €)}

6(q2,b, 22) = {(q2,€)}

5(q2,€,%) = {(q2,€), (¢s,9)} accepted by the empty stack and the final state respectively

Page 45 of

A CFL is said to be a non-deterministic CFL if it is accepted by a NPDA.

4.3 Equivalence between CFG and PDA

4.3.1 Construction of a PDA from a CFG

PDA is the machine accepting a CFL, which is generated from a CFG. A PDA can be constructed
from a CFG as follows:

1.
2.

Q.2.

Convert the CFG to GNF.

The start symbol S of the CFG is put to the stack by the transition

3(qo,€,8) = (q1,59)

For a production in the form {Non-terminal (NT),} — {Single Terminal (T)}{String of Non-Terminals},
the transition will be
0(¢i, T,NT;) — (g;, String of NT)

For a production in the form {NT,;} — {Single T}, the transition will be

5((]27 T7 NTZ) - (QM 6)

For accepting a string, two transitions are added, one for being accepted by the empty

stack and one for being accepted by the final state.

Construct a PDA that accepts the language generated by the following grammar.

S — aB
B —bA|b
A — aB

First, the start symbol S is pushed onto the stack by the following production

6(q07 €, $) — {((ha S$)}

For the production S — aB, the transition is

5(q1,a,S) - {(4173)}

For the prouction A — aB, the transition is

6((]17 a, A) - {(Q17B)}

For the production B — bA|b, the transition is

6((11,(),3) - {(qlaA)7 (qlve)}

Page 46 of

https://youtu.be/Yn-ZhiLrQZc

So,, the PDA for the given CFG is

Q ={q,01.4r}
Y ={a,b}

I ={$,5, A, B}
do = 4o

$=29
F={q}

¢ transitions are defined as follows:

d(qo, €, 9)
5(q1,a,)
d(q1,a, A)
6(q1,b,B)
)
)

—

= {(

—{(q1, B)

= {(a1,B)

= {(a1,4), (q1,€)}
0(q1,€,9) = {(qr,$)} accepted by the final state.
—{(

0(q1,¢,9 q1,€)} accepted by the empty stack.

4.3.2 Construction of a CFG from a PDA

Consider a PDA M = (Q,%,T,6, qo, $, F) which accepts a language L. A CFG G = (V, %, P, S),
equivalent to M can be constructed by the following rules.

Let S be the start symbol.

1. For ¢; € @, add a production rule S — [go,$,¢;] to P in G. If a PDA contains n states,

then there will be n productions from the start symbol.

2. For the § function 6(q,a, X) — (p,€) where ¢,p € @, a € ¥ and X € T', add a production
rule [¢Xp] = a in P.

3. For the transitional function §(q,a,X) — (p, Xy, Xo,...,Xi) where ¢,p € Q, a € ¥
and X, X1, Xo,..., X, € I', then for each choice of ¢1,q2...,qr € @, add production
[qXqr] = a[pXi1q1]lg1 X2¢2] - - - [qk—1Xkqx] to P in the grammar.

Refer page 403 of the |[reference book for a solved example (it is too lengthy).

4.4 Two-Stack PDA

A PDA is able to recognize CFLs due to the additional stack memory. However, a PDA is
helpless if it needs to recognize a Context-Sensitive Language (CSL) like {a™b"c™ | n > 0} because
of only one auxiliary storage. This is why two (or more) stacks are used alongside a PDA to

allow recognition of higher languages in the Chomsky hierarchy.

A PDA may be non-deterministic, but a two-stack PDA is always deterministic. A two-stack

PDA is equivalent to a Turing Machine.

Page 47 of

https://drive.google.com/file/d/1dgCbjxcJjdlFvZ_kJVqnaSJTu6sS1S59/view?usp=sharing

Chapter

Turing Machine

5.1 Definition

Turing Machines (TM) are abstract machines that could perform any computational process
carried out by the present day’s computer. The TM is the machine format for unrestricted

language; all types of languages are accepted by the Turing machine.

5.2 Formal Definition

A TM is defined by the following 7-tuple:
(Q?Zaraéyqoﬂ 7F)
where,

(Q = Finite set of states

> = Set of input symbols

I' = Finite set of allowable tape symbol
0 = Transitional function

qo = Initial state

L, = A symbol of I" called blank

F = Final state

The transition function 6 : @ X I' = Q X ' X {L, R, H}, i.e., from one state, by getting one input
from the input tape, the machine moves to a state, writing a symbol on the tape and moves to
left, right, or halts.

A string is said to be accepted by a TM if the machine halts at an accepting (final) state.

Page 48 of

5.3 Mechanical Diagram

A TM consists of an input tape, a read-write head, and finite control. The input tape contains
the input alphabets, with an infinite number of blanks at the left and the right-hand side of the

input symbols. The mechanical diagram of a TM is illustrated in figure figure.

«—— o110 o 1 1 o

State: ¢

Figure 5.1: Mechanical model for a TM

The read-write head reads an input symbol from the input tape and sends it to the finite control.
In the finite control, the transitional functions are written. According to the present state and

the present input, a suitable transitional function is executed.
Upon execution of a suitable transitional function, the following operations are performed.
o The machine goes into some state.

e The machine writes a symbol in the cell of the input tape from where the input symbol

was scanned.

e The machine moves the reading head to the left or right or halts.

5.4 Instantaneous Description

The ID of the TM remembers the following at a given instance of time:

e The contents of all the cells of the tape, theoretically infinite but usually non-blank cells,

are shown.
e The cell currently being scanned by the read-write head.
e The state of the machine.

Q.1. Design a TM to accept the language
L= {wwR ‘ w E {a,b}Jr}

The transitions are given in a tabular format as follows.

State a b X Y
0 | (¢, X,R) | (¢, Y, R) (ar, X, H) | (¢7,Y, H)
T (q1.a,R) | (q1,0,R) | (q2,.,L) | (g2, X,L) | (g2,Y,L)
Q2 (g3, X, L)
q3 (g3,a,L) | (g3,0,L) (90, X, R)
a1 | (@0, R) | (q1,0,R) | (g5,,L) | (g5, X, L) | (g5,Y.L)

Page 49 of

qs (q67 Yv L)
(3] (q67a7L) (qﬁaba L) (q()»KR)

5.5 Transitional Representation

The states and transitions of a TM are represented similar to other automata. The label of a
transition consists of the input symbol, the symbol written on the tape and the movement of
the read-write head (left, right, or halt).

Q.2. Design a TM by the transitional notation for the language L = {a"b™|n > 0}.

When the machine traverses ‘a’, replace that ‘a’ with ‘X’ and traverse right to find the
leftmost ‘0. Replace the ‘0> with Y’ and traverse left to find the second ‘@’ By this
process, when n symbols of ‘a’ and n symbols of ‘b’ are traversed and replaced by ‘X’ and

‘Y’ respectively, then by getting a blank () the machine halts. (Ans.)

X|X,R

Y|Y,R

uL,H

alX, R/\ by, L

start —{ 4o

Refer the Reference book! for illustrated solved examples.

Page 50 of

https://drive.google.com/file/d/1dgCbjxcJjdlFvZ_kJVqnaSJTu6sS1S59/view?usp=sharing

Acronyms

AT Automata Theory 1

CFG Context-Free Grammar 32-40, 42, 46, 47
CFL Context-Free Language 32, 33, 35-41, 45-47
CNF Chomsky Normal Form 37, 38

CSL Context-Sensitive Language 47

DFA Deterministic Finite Automaton 6-10, 12, 14, 15, 17, 22, 23, 27-29
DPDA Deterministic Pushdown Automaton 44, 45

FA Finite Automaton 5, 26, 28-31, 33
FSM Finite State Machine 5, 6, 9, 33, 42, 44

GNF Greibach Normal Form 37, 38, 46
ID Instantaneous Description 44, 49
Jojo Aaditya Joil 1

LIFO Last-In-First-Out 42

NFA Non-Deterministic Finite Automaton 10-12, 15-17, 27, 28
NPDA Non-Deterministic Pushdown Automaton 45, 46

PDA Pushdown Automaton 32, 33, 37, 40, 42-47

RE Regular Expressions 23, 26-30, 41
RRG Rupak R. Gupta 1

TM Turing Machines 48-50

ToC Theory of Computation 1

Page 51 of

TTTTTTT

	Fundamentals and Finite Automata
	Terminologies
	Symbol
	String
	Alphabet
	Language

	Finite State Machines
	State
	Transition

	Deterministic Finite Automata
	Acceptance of a String by a DFA
	Minimisation of DFA
	K-equivalency Method of reducing DFA
	Myhill-Nerode Theorem

	Regular Languages
	Operations on Regular Languages

	Non-Deterministic Finite Automata
	-NFA
	Conversion to DFA

	FSM with output
	Mealy Machines
	Moore Machines
	Representations of Mealy and Moore Machines
	Interconversion of Mealy and Moore Machines

	Language and Grammar
	Formal Grammar
	Chomsky Hierarchy
	Regular Grammar

	Regular Sets
	Basic Operations
	Closure Properties

	Regular Expressions
	Identites
	Arden's Theorem
	Conversion to Finite Automata
	Conversion from Finite Automata

	Equivalence of two Finite Automata
	Pumping Lemma

	Context-Free Grammar
	Definition
	Context
	Formal Definition
	Production Rules
	Differences from Regular Grammar

	Derivation Tree
	Left Derivation Tree
	Right Derivation Tree
	Ambiguous Grammar

	Simplification of CFG
	Elimination of useless variables
	Removal of Unit Productions
	Removal of Null Productions
	Chomsky Normal Form
	Greibach Normal Form

	Pumping Lemma
	Closure Properties
	Closed under Union
	Closed under Concatenation
	Closed under Kleene's Closure
	Not Closed under Intersection
	Not Closed under Complementation
	Every Regular Language is Context-free

	Pushdown Automata
	Definition of a PDA
	Components of a PDA
	Formal Definition
	Instantaneous Description
	Acceptance by a PDA
	Graphical Notation

	DPDA and NPDA
	Deterministic Pushdown Automata
	Non-Deterministic Pushdown Automata

	Equivalence between CFG and PDA
	Construction of a PDA from a CFG
	Construction of a CFG from a PDA

	Two-Stack PDA

	Turing Machine
	Definition
	Formal Definition
	Mechanical Diagram
	Instantaneous Description
	Transitional Representation

	Acronyms

