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Chapter 1
Introduction to Signals and Systems

1.1 Signals

A signal is a time-varying physical phenomenon which is intended to convey some information.

A signal can be represented as a function of one or more independent variables.

x := f (t1, t2, t3, . . . , tn)

Independent variablesDependent variable

1.2 Continuous Time and Discrete Time

1.2.1 Continuous Time

A Continuous Time (CT) signal is defined as a signal x(t) such that x(t) has a well-defined value
∀ t.

t

x(t)

Figure 1.1: A CT signal

1.2.2 Discrete Time

A Discrete Time (DT) signal is defined as a signal xn (or x[n]) which has a well-defined value for
only certain values. Alternatively, if t is a discrete variable for a signal x(t), then x(t) is known
as a DT signal.
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n

x[n]

Figure 1.2: A DT signal

1.3 Classification of signals

1.3.1 Analog and Digital signals

A CT signal x(t) is said to be analog if it is well-defined for any value in an interval (a, b).

−A

A

t

x(t)

Figure 1.3: An analog signal

A CT signal x(t) is said to be digital if it can only take a finite number of distinct values
{x1, x2, x3, . . . }.

−A

A

t

x(t)

Figure 1.4: A digital signal

1.3.2 Real and Complex signals

A signal x(t) is said to be real if ∀ t x(t) ∈ R.

A comlpex signal x(t) is defined as x(t) := x1(t) + jx2(t), where x1(t) and x2(t) are real signals.

1.3.3 Deterministic and Random signals

Deterministic signals are the signals whose values are well-defined for any t. They can be
modelled after a known function of t, such as a sinusoid.
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Random or non-determinisitc signals cannot be determined for all t. They must be analyzed by
statistical methods.

t

x(t)

Figure 1.5: A random signal

1.3.4 Symmetric and Antisymmetric signals

A signal x(t) or x[n] is said to be symmetric (or even) iff x(−t) = x(t) or x[−n] = x[n].

t

x(t)

Figure 1.6: An even CT signal

n

x[n]

Figure 1.7: An even DT signal

A signal x(t) or x[n] is said to be antisymmetric (or odd) iff x(−t) = −x(t) or x[−n] = −x[n].

t

x(t)

Figure 1.8: An odd CT signal

n

x[n]

Figure 1.9: An odd DT signal

Any signal x(t) can be expressed as a sum of its even function xe(t) and its odd function xo(t).

x(t) = xe(t) + xo(t) (1.1)

xe(t) :=
1

2
(x(t) + x(−t)) (1.2)

xo(t) :=
1

2
(x(t)− x(−t)) (1.3)

1.3.5 Periodic and Non-periodic signals

A signal x(t) is said to be periodic if ∃ T > 0 ∀ t : x(t + T ) = x(t). If this condition is not
followed, then the function is called non-periodic.
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T 2T

t

x(t)

Figure 1.10: A periodic signal

T 2T

t

x(t)

Figure 1.11: A non-periodic signal

1.4 Energy and Power

Consider x(t) or x[n] to be arbitrary time-varying signals.

1.4.1 Energy

Energy is denoted by E. The total energy of the signal x can be computed by the following
equations:

For a CT signal, E :=

∫ ∞

−∞
|x(t)|2 dt (1.4)

For a DT signal, E :=
∑
all n

|x[n]|2 (1.5)

1.4.2 Power

Power is denoted by P . The normalized (or average) power of the signal x can be computed by
the following equations:

For a CT signal, P := lim
T→∞

1

T

∫ T/2

−T/2

|x(t)|2 dt (1.6)

For a DT signal, P := lim
N→∞

1

2N + 1

N∑
n=−N

|x[n]|2 (1.7)

1.5 Standard CT signals

1.5.1 Step signal

A step signal is a digital signal that changes its amplitude once.

Unit step signal

The unit step signal is defined as follows:

u(t) :=

1, t > 0

0, t < 0
(1.8)
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1

t

u(t)

Figure 1.12: Unit step signal

Shifted unit step signal

The unit step signal shifted by time t0 is defined as follows:

u(t− t0) :=

1, t > t0

0, t < t0
(1.9)

t0

1

t

u(t− t0)

Figure 1.13: Shifted unit step signal

1.5.2 Impulse signal

An impulse is a short period of high amplitude. The impulse signal is defined as follows:

δ(t) :=

∞, t = 0

0, t 6= 0
(1.10)

t

δ(t)

Figure 1.14: Impulse signal
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Shifted impulse

The impulse signal shifted by time t0 is defined as follows:

δ(t− t0) :=

∞, t = t0

0, t 6= t0
(1.11)

t

δ(t− t0)

t0

Figure 1.15: Shifted impulse signal

1.5.3 Complex exponential signal

The complex exponential signal is defined as follows:

x(t) := ejωt (1.12)

= cosωt+ j sinωt (1.13)

Fundamental period, T =
2π

ω
.

t

x(t)

Figure 1.16: Exponentially increasing signal

t

x(t)

Figure 1.17: Exponentially decreasing signal

1.5.4 Ramp signal

The ramp signal r(t) is defined as follows:

r(t) :=

t, t ≥ 0

0, t < 0
(1.14)
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t

r(t)

Figure 1.18: Ramp signal

1.5.5 Parabolic signal

The parabolic signal x(t) is defined as follows:

x(t) :=


t2

2
, t ≥ 0

0, t < 0
(1.15)

t

x(t)

Figure 1.19: Parabolic signal

1.5.6 Rectangular signal

A rectangular signal x(t) is defined for a period T as follows:

x(t) :=

1, t ∈ [−T/2, T/2]

0, otherwise
(1.16)

− T/2 T/2

1

t

x(t)

Figure 1.20: Rectangular signal
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1.5.7 Triangular signal

A triangular signal x(t) is defined for a period T as follows:

x(t) :=


1 + 2t/T , t ∈ [−T/2, 0)

1− 2t/T , t ∈ [0, T/2]

0, otherwise

(1.17)

− T/2 T/2

1

t

x(t)

Figure 1.21: Triangular signal

1.5.8 Sinusoid

A sinusoidal signal x(t) is given by the following equation:

x(t) :=A sin (ωt+ ϕ) (1.18)
Amplitude

Angular frequency

Initial phase

−ϕ/ω π/ω 2π/ω

−A

A

t

x(t)

Figure 1.22: Sinusoidal signal

1.6 Basic signal operations

These are the fundamental operations that can be performed on signals.

Signals can be operated on using amplitude or time.

1.6.1 Gain

Given an input signal x(t) and an output signal y(t), the gain A is defined as,

Gain, A :=
y(t)

x(t)
(1.19)
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x(t) A y(t)

A > 1 =⇒ Amplification

0 < A < 1 =⇒ Attenuation

1.6.2 Amplitude operations

Amplitude scaling

Consider x(t) :=

1, t ∈ [−2, 1]

0, otherwise

Let y1(t) := 2x(t) =

2, t ∈ [−2, 1]

0, otherwise
and y2(t) := 0.5x(t) =

0.5, t ∈ [−2, 1]

0, otherwise
.

−2 1

1

t

x(t)

−2 1

1

2

t

2x(t)

Figure 1.23: Amplitude scaling: Amplification

−2 1

0.5

1

t

0.5x(t)

Figure 1.24: Amplitude scaling: Attenuation

Amplitude reversal

If x(t) :=

1, t ∈ [−2, 1]

0, otherwise
then the amplitude-reversed signal −x(t) =

−1, t ∈ [−2, 1]

0, otherwise
.

Addition of signals

Consider x1(t) :=

1, t ∈ [−1, 3]

0, otherwise
and x2(t) :=

2, t ∈ [0, 2]

0, otherwise
.

Their sum y(t) := x1(t) + x2(t) =


1, t ∈ [−1, 0) ∪ [2, 3]

3, t ∈ [0, 2)

0, otherwise

.
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−2 1

1

t

x(t)

−2 1

−1

t

−x(t)

Figure 1.25: Amplitude reversal

−1 3

1

t

x1(t)

−1 2

2

t

x2(t)

−1 2 3

1

3

t

(x1 + x2)(t)

Figure 1.26: Addition of signals

Multiplication of signals

Consider x1(t) :=

1, t ∈ [−1, 1]

0, otherwise
and x2(t) :=

2, t ∈ [0, 2]

0, otherwise
.

Their product y(t) := x1(t) · x2(t) =

2, t ∈ [0, 1]

0, otherwise
.
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−1 1

1

t

x1(t)

−1 2

2

t

x2(t)

−1 1 2

2

t

(x1x2)(t)

Figure 1.27: Multiplication of signals

Differentiation

The derivative of a signal x(t) with respect to time at a given point in time describes the slope
of the tangent to the signal at that point in time.

−1

1

t

x(t)

−1

1

t

x′(t)

Figure 1.28: Differentiation

Integration

The integral of a signal x(t) with respect to time describes the area under the plot of the signal.
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1.6.3 Time operations

The operations on the independent variable time are also known as time transformations.

Time shift

Time shifting changes the position of the signal on the time axis, but not its shape.

x(t) −→ x(t− t0)︸ ︷︷ ︸
Delay by t0

(Right shift)

x(t) −→ x(t+ t0)︸ ︷︷ ︸
Advance by t0

(Left shift)

Time scaling

When we manipulate the time axis of a signal by multiplying a constant to the independent
variable time t, the signal gets compressed or expanded depending on the value of the scaling
factor α.

∴ x(t) −→ x(αt)

α > 1 =⇒ Compression

0 < α < 1 =⇒ Expansion

For example, consider x(t) :=

1, t ∈ [−2, 2]

0, otherwise

−2 2

1

t

x(t)

−2 −1 1 2

1

t

x(2t)

Figure 1.29: Time scaling: Compression

−4 −2 2 4

1

t

x(0.5t)

Figure 1.30: Time scaling: Expansion
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Time reversal

Consider x(t) :=


1, t ∈ [−2, 0)

1− t, t ∈ [0, 1]

0, otherwise

. The time-reversed signal x(−t) =


1 + t, t ∈ [−1, 0]

1, t ∈ (0, 2]

0, otherwise

.

−2 1

1

t

x(t)

−1 2

1

t

x(−t)

Figure 1.31: Time reversal

• Even signals are invariant under time reversal.

• Time reversal of odd signals causes amplitude reversal.
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Chapter 2
Z transform

2.1 CT transformations

2.1.1 Fourier transform

A Fourier transform is used to convert a signal from time domain to frequency domain. It is a
mathematical tool used for easier analysis of signals.

One application of Fourier transform is to convert the convolution operation to a multiplication
operation between two signals.

Convolution (∗) Fourier transform−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−
Inverse Fourier transform

Multiplication (·)

A Fourier transform exists for Energy signals, Power signals and Impulse-related signals i.e.
signals that are absolutely integrable. Fourier transform does not exist for signals that are not
absolutely integrable, such as Neither Energy nor Power (NENP) signals.

The Fourier transform X(jω) of a signal x(t) is defined as follows:

X(jω) = F{x(t)} :=

∫ ∞

−∞
x(t)e−jωt dt (2.1)

The inverse Fourier transform for X(jω) is given by:

x(t) = F−1{X(jω)} :=
1

2π

∫ ∞

−∞
x(jω)ejωt dω (2.2)

2.1.2 Laplace transform

A Laplace transform is a generalized Fourier transform. The transformed signal F (s) of the
signal f(t) is given as,

X(s) = L{x(t)} :=

∫ ∞

−∞
f(t)e−st dt (Bilateral Laplace transform) (2.3)

X(s) = L{x(t)} :=

∫ ∞

0

f(t)e−st dt (Unilateral Laplace transform) (2.4)

Page 17 of 23



Here, s is a complex variable given as,

s :=σ +j ω

Complex frequency Damping factor

Angular frequency

The inverse Laplace transform is given by,

f(t) = L−1{F (s)} :=
1

2π

∫ s

−s

F (s)est ds (2.5)

A Laplace transform exists for Energy signals, Power signals, as well as certain NENP signals.

2.1.3 Relation between Laplace and Fourier transforms

Consider a Laplace transform F (s) as follows:

F (s) :=

∫ ∞

−∞
f(t)est dt

Substituting s := σ + jω,

∴ F (s) =

∫ ∞

−∞
f(t)e−(σ+jω)t dt

=

∫ ∞

−∞
f(t)e−σt−jωt dt

=

∫ ∞

−∞
f(t)e−σt︸ ︷︷ ︸
:= x(t)

e−jωt dt

∴ F (s) = F{x(t)} = F
{
f(t)e−σt

}
=⇒ L{f(t)} = F

{
f(t)e−σt

}
(2.6)

2.2 Z-transform

A Z-transform is an analogous transformation to Laplace transforms but for DT signals. Just
like Laplace transform, a Z-transform exists for Energy signals, Power signals and some NENP
signals. The Z-transformed signal x[z] of a DT signal x[n] is given as follows:

X[z] = Z{x[n]} := lim
N→∞

N∑
n=−N

x[n]z−n (Bidirectional Z-transform) (2.7)

X[z] = Z{x[n]} := lim
N→∞

N∑
n=0

x[n]z−n (Unidirectional Z-transform) (2.8)

Where z is a complex number as follows:

r ejω

Magnitude Complex argument

A signal can be transformed back using an inverse Z-transform.

x[n]
Z-transform−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−

Inverse Z-transform
X[z]
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2.2.1 Region of Convergence

The Region of Convergence (ROC) is the region in the z-plane where the Z-transform exists,
convergent and finite.

x

y

r
z = rejω

ω

Figure 2.1: Region of Convergence (ROC)

Q.1. Consider the signal x[n] := anu[n]. What is its region of convergence?

X[z] :=
∞∑

n=−∞
x[n]z−n

=

∞∑
n=−∞

anu[n]z−n

=

0∑
n=−∞

an · 0 · z−n +

∞∑
n=0

an · 1 · z−n

=

∞∑
n=0

(a
z

)n

= 1 +
a

z
+
(a
z

)2

+ . . .

=
z

z − a

However, the above geometric series is convergent if and only if
∣∣a
z

∣∣ < 1 =⇒ |z| > |a|.
Therefore, the region of convergence is r > |a|.

x

y

|a| z

|z| > |a|
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Properties of ROC

• ROC of Z-transform is the region surrounding a ring or disc in the z-plane centered at the
origin.

• ROC of a Z-transform does not contain any poles (÷ 0).

• ROC of an Linear Time-Invariant (LTI) stable system has a unit circle.

• For δ[n], ROC is the entire z-plane.

• The ROC of an infinite duration causal (right-sided) sequence is the exterior of a circle
(|z| > a for some a).

• The ROC of an infinite duration anticausal (left-sided) sequence is the interior of a circle
(|z| > a for some a).

• The ROC of an infinite duration two-sided DT sequence is an annulus or ring (a < |z| < b

for some a, b)).

• The ROC of a finite duration causal sequence is the entire z-plane except for z = 0.

• The ROC of a finite duration anticausal sequence is the entire z-plane except for z = ∞.

• The ROC of a finite duration two-sided sequence is the entire z-plane except for z = 0 and
z = ∞.

• The ROC of the sum of two signals is the intersection of their ROCs.

Q.2. Find the ROC of the signal x[n] := 2nu[n].

∵ 2nu[n] is an infinite duration causal sequence, its region of convergence the exterior of
the circle of radius 2 centered at origin, i.e. |z| > 2.

x

y

2
z

|z| > 2

2.2.2 Properties of Z-transform

Linearity Consider the DT signals x1[n] and x2[n] as follows:

x1[n] −−⇀↽−− X1[z] ROC := R1

x2[n] −−⇀↽−− X2[z] ROC := R2

Scaling by α : αx1[n] −−⇀↽−− αX1[z]

Scaling by β : βx2[n] −−⇀↽−− βX2[z]
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∴ αx1[n] + βx2[n] −−⇀↽−− αX1[z] + βX2[z], ROC ⊇ R1 ∩R2 (2.9)

Time Scaling Consider a DT signal x[n] as follows:

x[n] −−⇀↽−− X[z] ROC := R

∴ x
[ n
m

]
−−⇀↽−− X[zm] ROC := R

1/m (2.10)

Time Shifting Consider a DT signal x[n] as follows:

x[n] −−⇀↽−− X[z] ROC := R

∴ x[n− n0] −−⇀↽−− z−n0X[z] ROC := R (2.11)

Time Reversal Consider a DT signal x[n] as follows:

x[n] −−⇀↽−− X[z] ROC := R

∴ x[−n] −−⇀↽−− X[z−1] ROC := 1/R (2.12)

Amplitude Scaling Consider a DT signal x[n] as follows:

x[n] −−⇀↽−− X[z] ROC := R

∴ anx[n] −−⇀↽−− X
[z
a

]
ROC := |a|R (2.13)

Conjugation Consider a DT signal x[n] as follows:

x[n] −−⇀↽−− X[z] ROC := R

∴ x∗[n] −−⇀↽−− X∗[z∗] ROC := R (2.14)

Accumulation Consider a DT signal x[n] as follows:

x[n] −−⇀↽−− X[z] ROC := R

∴
n∑

k=−∞

x[k] −−⇀↽−−
X[z]

1− z−1
ROC ⊇ R ∩ (|z| > 1) (2.15)
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Acronyms

CT Continuous Time 4–7

DT Discrete Time 4–7, 18, 20, 21

LTI Linear Time-Invariant 20

NENP Neither Energy nor Power 17, 18

ROC Region of Convergence 19–21

RRG Rupak R. Gupta 1
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The End.
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