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Abstract

This book provides a concise introduction to optimization methods, spanning linear programming, unconstrained
and constrained optimization, and modern metaheuristics. Topics include the simplex and dual simplex methods,
gradient- and Hessian-based approaches, Lagrangian and [KKT| conditions, and algorithms such as simulated
annealing, genetic algorithms, [TLBO| [PSO| (GWO| and NSGA-II. Applications to multiobjective problems,

machine learning, and parallel computation highlight the practical relevance. Worked examples and algorithms

ensure both conceptual clarity and problem-solving ability.
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Chapter

Linear Programming

Outline
11 Introductionl. . . . . ... ... ... ... e 3
(1.2 SimplexMethod| . . ... ... .. .. .. e e 3
(1.3 Dual SimplexMethod| . . . . . . ... ... e 5
(1.4 Non-SimplexMethods| . . . . . ... ... .. .. . . oo 5
[1.4.1  Graphical Method|. . . . . . . .. ... 5
............................................. 6

1.1 Introduction

Linear programs have a linear objective function and linear constraints, which may include both equalities and

inequalities.!!]

Linear programs are usually stated and analyzed in the following standard form:

max ¢ ' X, subjectto Ax =b,x; >0

where ¢ € R™, b € R™, A € M, xn(R). Any problem can be easily transformed into the standard form. for
instance, given the problem
max ¢ ' x, subjectto Ax < b,x; > 0

we can convert the inequality constraints to equalities by introducing a vector of slack variables (s) and writing

max CTX, subjectto Ax+s =b,x; > 0,5 =0

1.2 Simplex Method

Q. Consider the given|Linear Programming Problem (LPP),

max Z := xq + 4x2, subject to
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LINEAR PROGRAMMING

2x1 +%x2 < 3
3x1 + 5% <9
X1 +3x2 <5

X1,%X2 =0

To convert it into the standard form, introduce slack variables s; for each constraint.

c.L—x1 —4x9 —0s1 —0sg —0s3 =0
Co2x1 +x2+ 81+ 0s2+0s3 =3
Co3%x1 +9%x2 +0s1 +5s2+0s3 =9
C.X1+3x0 4+ 0s1 +0s9 +s3=5

.. X1,X2,81,82,83 2 0
The Simplex tableau is written as follows,

Iteration 1

Row ‘ Basic Variable ‘ X7 X9 S1 S S3 ‘ RHS ‘ Ratio
Ry | z -1 4 0 0o o] o |o
Ry $1 2 1 1 0 0 3 3/ =3
R3 S9 3 5 o 1 0 9 9/ =1.8
R4 S3 1 3 0 0 1 5 5/3 ~ 1.67

Table 1.1: Simplex Tableau

1. Select the coefficient in Z that is the most negative. This column would be considered as the key column.
2. Compute the ratio of the term with that of the key column for each row.

3. Select the row with the least positive ratio as the key row.

4. The intersection of the key column and key row is the key element, which must be scaled down to 1.

Upon scaling the row down, we obtain

Row ‘ Basic Variable ‘ X7 X2 S1 S2 S3 ‘ RHS ‘ Ratio

Ri | z -1 4 0 o o |
Ry S1 2 1 1 0 3
Rs $9 3 5 0 1 9
R4 S3 /g1 0 0 1B 53

5. Using the key element, reduce all other elements of the key column to zero., i.e.

R3—>R3—5R4
R2—>R2—R4

Ry — Ry + 4Ry
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LINEAR PROGRAMMING

Now, replace the basic variable of the key row s3 with the variable of the key column x.

Iteration 2

Basic Variable ‘ X;] X9 S1 SS9 S3 ‘ RHS ‘ Ratio

Z ‘ /30 0 0 43 ‘ 20/3 ‘
S1 53 0 1 0 —l53| 44
S9 430 0 1 =5/ 23
X9 /51 0 0 1/3 5/3

*.* There is no negative element in the Z row, there is no key column.

Therefore, the optimal solution is,

D
* 1 * —
Xl_ X2_§7 Zmax—

w

(Ans.)

1.3 Dual Simplex Method

The above method worked for maximization types of problems. To solve minimization problems, we can either
use the duality principle (§1.4.2), or use a variation of the Simplex method known as the Dual Simplex method.

1.4 Non-Simplex Methods

Non-Simplex methods do not use the Simplex tableau to solve the primal problem. Some of these methods are

discussed below.

1.4.1 Graphical Method

Graphical method is typically used for 2-variable optimization problems, as the plots are relatively easier to

draw and visualize as opposed to higher dimensions.

Q. Consider the following primal problem.

max Z := 2x1 + 3xg, subject to

X1 + 2x2

6
2X1 + X9 8
0

A\VARV/ANV/AN

X1, X2

! All variables not present in the first column are zero for the optimal solution.
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LINEAR PROGRAMMING

Inequality Constraint ‘ Equality Constraint ‘ X1 =0 x3:=0 ‘ Origin

Feasible

Feasible

X1+ 2x2 < 6 X1+ 2xo =6 (0,3) (6,0)
2x1 +x2 < 8 2x1 +x2 =8 (0,8) (4,0)

Table 1.4: Graphical method

Using the coordinates calculated in table we plot the feasible region as follows:

g o N oo ©

W

T

1 2 3 4 5 6 7 8 9

Figure 1.1: Graphical method for (The feasible region is shaded in gray.).

The intersection of the two lines is at the point (13—0, %)

Therefore, all corner points of the feasible region are candidate solutions.

Point ‘ Z = 2x1 + 3x9

(0,0) |0
(0,3) |9
(4,0) |8
(2.4) |~ 00

Table 1.5: Graphical method: Evaluation of Z at candidate solutions

-.» The maximum value occurs at (%, %), the optimal solution is

. . 4 32
X1 =5 X2:§7 Zmang

(Ans.)

1.4.2 Duality

Duality is a principle that every (the primal) has a corresponding dual problem such that solving the primal

problem generates information about the dual problem.
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LINEAR PROGRAMMING

Q. Consider the following primal problem.

min Z := 10x; + 20x2, subject to

3x1 + 2x9 > 18
X1+ 3x2 > 8
—2%x1 +%x3 = —6

X1,X2 = 0

The dual of the above problem is formulated as,

max W = 18y; + 8ya — 6y3s, subject to

3y1 +y2 —2y3z < 10
2y1 +3y2 +yY3 < 20
>0

Y1,Y2,Ys3

The conversion is done by transposing the coefficient matrix of the primal constraints and reversing the

inequalities, i.e.

3 2 18 Y1

X1 3 1 =2 10
X2 2 3 1 20

-2 1 —6 Y3

min Z=10x1+20x2 max W=18y1+8y2—6ys

The dual problem can be solved by Simplex method as discussed in By the theorem of duality,

Zmin = Whax (1.1)
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Unconstrained Optimization

Outline
2.1 __Condition for Local Minimizer| . . . . . . ... ... ... ... ... 8
11  TheHessian Matrixl. . . . . . .. .. ... . 8
2.2 One-Dimensional Search Methods|. . . . . .. ..... ... ... ... ... ..... 10
[2.2.1  Bounding Phase Method| . . . . . ... ... .. ... o oo 10
[2.2.2  Interval Halving Method| . . . . . . . .. .. ... .. ... ... ... .. ... ..., 11
223  Golden Section Method . . . . . ... ... .. .. 14
2.3  GradientMethods| . ... ... ... ... ... . . e 14
24 Newton’sMethod . . . ... ...... ... ... ... . ... ... . ..., 16
[2.4.1  Newton-Raphson Method| . . . . . . ... ... ... .. ... ... ... 17

2.1 Condition for Local Minimizer

Unconstrained optimization focuses on finding the minimum (or maximum) of a function without constraints.

The necessary and sufficient conditions for a local minimizer rely on derivatives and Hessian matrices.

2.1.1 The Hessian Matrix
T
For a scalar multivariable function f(x), where x := [xl Xg - xn} € R™, the gradient of f is denoted by

V{(x) and is defined as follows:

Vf(x):[ﬁ 2f . afr 2.1)

ax1 aXQ 6§:

Computing the gradient is the [First-Order Necessary Condition (FONC)|for a local minimizer.

The Hessian matrix Hy of f is an n X n matrix comprising second-order derivatives. For n = 2, f(x) = f(x1, x2)

and the Hessian is defined as,

02f o%f
ox2 0x10%2
He= 1 54 92 f (22)
6xQ6x1 aX%

Page 8 of



UNCONSTRAINED OPTIMIZATION

For order n, the Hessian is defined as,

[ 22f o2 f ...
ox? 9x10X2 0x10Xn
92f 2%f ...
Hf _ Ox20%1 ox3 0X20Xn
o%f 0%t o
LOXxnO0Xx1  OXn0Xo2 ox2

(2.3)

A critical point on a function is said to be stationary if the gradient at that point is zero.

Depending on the nature of the Hessian matrix, the following inferences can be drawn for a stationary point:

 Positive definite: If Vx, xTfo > (), then f has a local minimum.

. Negative definite: If Vx, x ' Hyx < 0, then f has a local maximum.

+ Indefinite: If Hy is neither positive nor negative definite, then f has a saddle point.

Computing the gradient is the [Second-Order Sufficient Condition (SOSC)|for a local minimizer.

Q. Consider the function:

f(Xay) = X2 - y2
Determine the nature of all critical points.

For a critical point, the gradient at that point must be zero (FONC).

of
- Vilx,y) = [g’]ﬁ]
dy

1)1

= 2x=0 = x=0

Equating the two components,

= —2y=0 = y=0

[X] [0] | | !
B = 1s a stationary point.
y 0

0
Computing the Hessian at [0] SOSC),

2 0
S He =

The eigenvalues of Hy are A; = 2 and A2 = —2. Since A1 > 0 and Ay < 0, the Hessian is indefinite and the

0
point [0] is a saddle point.

Q. Consider the function:

f(x1,%x2) = xf + SX% — 4x1x2 + 5X1 — 6X2

Determine the nature of all critical points.
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UNCONSTRAINED OPTIMIZATION

Computing the gradient (FONC),

2%, —4xg + 5
L Vf(xxg) = | T et
—4x1 4+ 6x9 — 6
of
L ViExy) = | 3
dy
|2 —4xe+5 | |0
—4xy +6x0 — 6] |0

Equating the two components,

= 2x;1 —4x0+5=0

— —4x1 +6x2—6=0

X 3/2
Solving the two equations, we obtain [ 1] = [ ; ] as a stationary point.
X2

3
Computing the Hessian at [ ;] SOSC),

2 —4
S He =
—4 6
Using the characteristic equatio A2 — 8\ — 4 = 0, we obtain the eigenvalues A\; = 4 4+ 2v/5 > 0 and

Ao =4 —2/5< 0.

3/2
Therefore, the Hessian is indefinite and the point [ g ] is a saddle point. (Ans.)

2.2 One-Dimensional Search Methods

One-dimensional search methods are used to find the minimum (or maximum) of a function f(x) € R along a

single variable x € R. These methods are used to iteratively search for the optimal x that optimizes f(x).

This can be done using the following bracketing methods.

2.2.1 Bounding Phase Method

54

Q. Consider the function f(x) = x? + —. The objective is to find min f(x).
X

Consider an initial guess xg := 0.5 and increment A == 0.5.

For each iteration i, evaluate the function at x; — A, x; and x; + A.

!For a matrix A € May2(R), the characteristic equation is A2 — (tr A)A + det A = 0.
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UNCONSTRAINED OPTIMIZATION

Update the value of x; as follows:

xi —2'A; f(xi —A) < f
Xit1 =
> f

<f
. (2.4)
xi +2'A; f(xi — A) >f

The algorithm terminates when f(xi 1) £ f(xi). The optimal solution x* is said to lie in the interval
(Xi—1,Xi41)-

Iteration 0

54
xo—A=05—05=00 = f(0.0) =0.0>+ — — ..

0.0
54
xo = 0.5 = f(0.5) = 0.5% + 05 108.25
54
xo+A=05+05=10 = f(1.0) = 1.0 + 0~ 55.0

.00 > 108.25 > 55.0, the minimum is towards the right.

X1 =Xg + 20A
=05+1-0.5
JoX1 = 1.0

Tabulating remaining entries,

] e x| ) i) | i) < k) |

0] 0.5 1.0 108.25 55.0 v
1110 20 55.0 31.0 v
2120 4.0 31.0 29.5 v
3140 8.0 29.5 70.75 X
.. Optimal solution x* € (x2,x4) = x* € (2.0, 8.0).
Therefore, the approximate optimal solution | x* = w =5.0|and | f(x*) ~ 35.8| (Ans.)

2.2.2 Interval Halving Method

Interval halving method is a bracketing method used to find the optimum solution within an interval [a, b].

The algorithm is as follows:

ZMore rigorously, if a :== xo — A, then f(a) = lim+f (x), which in this case tends to infinity.
X—a
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UNCONSTRAINED OPTIMIZATION

Algorithm 1: Interval Halving Method
Input: Initial interval [a, b], tolerance € > 0

Output: Approximate minimizer x*

1 whileb—a > e do

S a+b

2 Compute midpoint: Xm 5
. a+x Xm +b
3 Compute test points: x1 < 5 m, Xo m2 ;

4 Evaluate: f(x1), f(xm), f(x2);
5 if f(x1) < f(xm ) then

6 ‘ b+ xXm;
7 else
8 if f(x2) < f(x) then
9 ‘ a < Xm;
10 else
11 a < Xi;
12 L b+ x9;
- a+b

13 Set x* +— ——;
2

14 return x*;

54

Q. Consider the function f(x) = x? + —. The objective is to find min f(x).
X

Consider an initial interval a := 0, b := 5 and tolerance € == 1073.

Iteration 1 x,,, = ()'5—5 = 2.5. Now, X1 = ()4—2& =1.25and x9 = 2'52+5 = 3.75.

Evaluating X1, X and xa,

£(1.25) = 44.7625
£(2.5) = 27.85
£(3.75) = 28.4625

wf(x1) > f(xm), f(x2) > f(xm).

= a:=1.25
= b=3.75
b—a=37—-125=25>¢

Iteration 2 x, = 1225375 — 2.5 Now, x; = 122522 — 1 875 and xo = 2543715 = 3125,

Evaluating x1, X and xa,

f(1.875) = 32.315625
£(2.5) = 27.85
£(3.125) = 27.045625
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cof(xq) > f(xm), f(x2) < f(xm).

= a=25
b—a=375—-25=125>¢

and so on, until b — a < e.
The final bracket obtained would be,

[a, b] =~ [2.9996, 3.0002]
And optimal solution x* = %b ~ 2.9999

Therefore, the approximate optimal solution | x* &~ 2.9999 and‘f (x*) &~ 27.0000 | (Ans.)
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2.2.3 Golden Section Method

The golden section method is very similar to the method discussed in Instead of dividing the two
segments of the interval equally, they are divided in the golden ratio ().

Where,
_ VAL s
2
We define a constant ¢ as follows:
1 —1
@ == V5 ~ 0.618
() 2

The algorithm is as follows:

Algorithm 2: Golden Section Search
Input: Initial interval [a, b], tolerance € > 0

Output: Approximate minimizer x*
V-1

5
2 Compute x; + a+ (1 —@’)(b—a);

1 Set @'

3 Compute x2 + a+ ¢@’(b— a);
4 Evaluate f(x1), f(x2);
5 while b — a > € do

6 | if f(x1) < f(x2) then
7 b+ xg;
8 X2 < X13
9 f(x2) + f(x1);
0 )1 a+(1—")(b—a);
11 Evaluate f(x1);
12 else
13 a < Xip;
14 X1 < X9;
15 f(x1) < f(x2);
16 X2 <~ a+ @'(b—a);
17 Evaluate f(x2);
- a+b

18 Set x* +— ——;
2

19 return x*;

Solving the earlier problem using this method is left as an exercise to the reader.

2.3 Gradient Methods

Gradient-based methods are iterative techniques used to find the minimum (or maximum) of a function when
no constraints are present. These methods rely on the first derivative (gradient) to guide the search toward an

optimal solution.

The rule for minimization is,
xHD = x 0 — qwf(x(F))
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where we define « to be the step size (or learning rate).
Q. Minimize the function f(x1,x2,%3) = x +x3 + x% — 2x1 + 2x2 + 3 using gradient descent.

The gradient vector is,

2X1 —2
Vi(x1,x2,x3) = |2x2 +3
2X3
0.00
Consider an initial guess of x(°) :== |0.00| and « = 0.5.
0.00

Iteration 1

xW =x0) — qwf(x)

[0.00 —2.00

— 10.00{ —0.5 | 2.00

0.00 0.00
X7 [ 1.00
U = {-1.00
x| 0.00

Iteration 2

x2) =x — v

1.00 | 0.00

— |=1.00| — 0.5 |0.00

| 0.00 | 0.00
X7 [1.00]
x| = |-1.00
2 1000 |

Since there is no further change, the solution has converged.

1.00
Therefore, the optimal solution is|x* = | —1.00 and‘ f(x],x3,x3) = f(1.00,—1.00,0.00) = 1.00 ‘ (Ans.)
0.00

Q. Minimize the function f(x1, x2) = X% + 3X§ — 4x1%2 + 5X%1 — 6X2 using gradient descent.

The gradient vector is,
2x1 —4x9 + 5
—4x1 + 6x9 — 6

Vif(xi,%x2) = [

0.00
Consider an initial guess of x(0) == [O OO] and o == 0.01.
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Iteration 1
Iteration 2

Iteration 3
x3) =x® — av(x?)

Y] [Fo.1401
R 0.1637
It is observed that there is no convergence as the function is unbounded below. Therefore, the algorithm

diverges. (Ans.)

2.4 Newton’s Method

Newton’s method is a second-order optimization technique that converges faster than gradient descent by

incorporating second derivatives (Hessian matrix).
The rule for minimization is,
x D = x (0 A e f(x () (2.5)
Newton’s method converges quadratically if Hy is positive definite.
Q. Minimize the function f(x1,%2) = X3 + 3x3 — 4x1%2 + 5%; — 6x2 using Newton’s method.

The gradient vector is,

[ 2x1 —4x9 + 5
Vi(x1,x2) = ' ?
_—4X1 + 6x9 — 6
The Hessian matrix is, )
2 —4
H: =
—4 6
Inverting the Hessian,
32 1
H ! = /
1 1A

0.00
Consider an initial guess of x(0) == .
0.00

Iteration 1
x(M) = x(0) — H;1Vf(x(0))

XM [1s0
P (2.00
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Iteration 2
x(2) = x(1) — Hf_1Vf(x(1))

X7 150
P (2.0

Since there is no further change, the solution has converged.

1.50
. The optimal solution is |x* = [2 00] and\f(x;,x;‘) — £(1.50,2.00) = —2.25 \ (Ans.)

2.4.1 Newton-Raphson Method

For one-dimensional problems (f : R — R), the objective typically is to find a root of the real-valued function

f (ie. x s.t. f(x) = 0). This root can be approximated iteratively by using the following rule,

) _ f(x®)
f/(x (<))

x(kH1) = (2.6)

Important Distinction

If the objective is to optimize the function f, we are looking for the stationary points (i.e. x s.t. '(x) = 0). In
this case, the problem is identical to the one presented in where f’(x) is equivalent to the gradient and

f”"(x) is equivalent to the Hessian for one dimension. The corresponding rule of minimization is therefore,

o _ £

(k+1) ._ _
X '_ f//(x(k))

X (2.7)

which is the same as eq. (2.5).
Q. Approximate a root of the polynomial x* — 4x + 1 using Newton-Raphson method.
Define f(x) = x> — 4x + 1.
Differentiating f with respect to x,
— f'(x) =3x%>—4
Consider an initial guess of x(°) := 0.00.
Applying Newton-Raphson method,

Iteration 1
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Iteration 2

Iteration 3

Iteration 4

fr(x(3))

.0002
~ 0.2540 — 0.000

S x® ~0.2541

Since there is no further change, the solution has converged.

.. A root of the polynomial x® — 4x + 1 is at | x ~ 0.2541 |.

—3.8063

(Ans.)
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Non-Linear Constrained Optimization

Outline

[3.1 Problems with Equality Constraints|. . . . ... ........... ... ........

[3.2  Lagrange Multiplier Method| . . . . . ... ... ... .. ... ... . ... o ..
[3.3 Karush-Kuhn-Tucker (KKT) Conditions| . . . . . . . ... ... ... ...

[3.3.1  Stationarity] . . . . . . ...

[3.3.2  PrimalFeasibility] . . . . . . . . . . . . ..

[3.4 Constrained Optimization] . ... ... ... ... ... ... . ... ...

3.1 Problems with Equality Constraints

A general non-linear optimization problem with equality constraints is given by,
min f(x)
Subject to equality constraints hi(x) =0, fori € {1,2,..., m}, where

f(x) is the objective function to minimize.

hi(x) are equality constraints.

3.2 Lagrange Multiplier Method

The Lagrangian function incorporating equality constraints is,
m
L) =f(x)+ Y Ahi(x)
i=1
where A; are the Lagrange multipliers.

3.3 Karush-Kuhn-Tucker (KKT) Conditions

To find the optimal solution, we set the [Karush-Kuhn-Tucker (KKT)| conditions:
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NoN-LINEAR CONSTRAINED OPTIMIZATION

3.3.1 Stationarity

This condition is obeyed when the critical point is stationary, i.e. there is no gradient.
m
L VL=VEx) + ) MVhi(x) =0 (3.2)
i=1

3.3.2 Primal Feasibility

This condition is obeyed when all equality constraints are satisfied.
= hi(x)=0Vvie{l,2,...m}L

Q. Consider the non-linear optimization problem
. 24 42
min f(x,X2) = X7 + X5

Subject to the equality constraint:

X1 +x0—1=0
Define the Lagrangian function as follows:

L(x1,%2,A) :x% —|—x§ +A(x1 +x2—1)

Applying first derivative conditions,

0L

'.7:2X1+}\2:0
ax1
0L

L— =2X9+A =0
6X2
0L

a :X1+X2—1 =0

Upon solving the two equations, we obtain 2x; = —A = 2xg = X1 = Xa.

Substituting x; = X2 in the constraint equation,

X1 L/
X1 +Xo=1 = 2x1 =1 = =
X2 1/2

Therefore, the function value at the optimal point,

1\? /1\? 1
f(xT,XE)=(2> +(2> !

Thus, the optimal solution is,

(Ans.)

. Given the optimization problem min f(x,x2) = (x1 — 2)% + (x2 — 3)? subject to x? + x5 — 4 = 0, find the
p p d 1 2

values of x; and x2 that minimize f(x) while satisfying the constraint.
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Define the Lagrangian function as follows:
Lxa,x2,A) = (x1 = 2)” + (x2 = 3)2 + A(x{ + x5 — 4)

Applying first derivative conditions,

0L

L—=2(x1 —2)+2Ax1 =0
ax1
0L

L —=2(x0—3)+2Ax0 =0
aXQ
0L

BTN =X +x2—4:=0

Upon solving the two equations, we obtain x1 (1 +A) = 2 and x2(1 +A) = 3.

Substituting x; and x, in the constraint equation,

: 1 + ) =4
T(14A)2 T (14A)2
13
(1A=
S (1+A) 1
V1
A —24+/13
.. — 2
9 3 X _4 __4
Therefore, we obtain x; = andxg = —— — ! € = , =
1+A 14+A X9 _6_ _6
V13 V13
—_——
P X_
Evaluating, f(x ) = 4.3675 and f(x_) ~ 26.555.
Thus, the optimal solution is,
4 6 —2++13
X =—, X5 = ——, A:Jri, f(x*) ~ 4.3675
V13 V13 2

(Ans.)

3.4 Constrained Optimization

Constrained Optimization aims to optimize an objective function subject to equality as well as inequality

constraints.

The general form for a constrained optimization problem,

min f(x) subject to gj(x) < 0, hi(x) =0

For a candidate solution, the following [KKT]| conditions are necessary for optimality:
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. Stationarity: There must be no gradient at the optimal point.
VX)) + > MVgilx*)+ ) 1 Vhi(x*) =0 (33)
. Primal feasibility: The candidate solution must satisfy all constraints, i.e. the solution must be feasible.

gi(x") < 0,h;(x*) =0 (3.4)

. Dual feasibility: Inequality multipliers cannot be negative, as they must preserve the nature of the
inequality.

A =0 (3.5)
. Complementary slackness: For each inequality constraint, one of the following hold:
+ The constraint is active (gi(x*) = 0 and A; > 0), which influences the solution.
« The constraint is inactive (gi(x*) < 0 and A; = 0), which means it has no effect.

Aigi(x*) =0 (3.6)
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Single-Objective Optimization

Outline
[4.1 Simulated Annealing|. . . . . . . . ... e e 23
[4.2  Genetic Algorithms| . . ... . ... ... ... e e 23
[4.3 Evolutionary Algorithms| . . . . . . ... ... ... ... . oo 23
[4.3.1  Teaching-Learning-Based Optimization (TLBO)[. . . . . . ... ... ... ... .... 23
[4.3.2  Particle Swarm Optimization (PSO)| . . . . . . . . . . ... ... ... ... 24
[4.3.3  Grey Wolf Optimization (GWO)| . . . . . . .. . .. . . .. . . 24
4.1 Simulated Annealing
AE
P= __- 4.1
eXp( T > (4.1)
4.2 Genetic Algorithms
4.3 Evolutionary Algorithms
Define clamp(x; a, b) as follows:
a, x<a
clamp(x;a,b):=qx; a<x<b (4.2)
b; b<x
4.3.1 Teaching-Learning-Based Optimization (TLBO)
[Teaching-Learning-Based Optimization (TLBO)|
Boundary condition: Vi, X; € [a, b]
Teaching Phase
Xnew = X +rand - (Xbest - TFXmean) (4‘3)

Page 23 of



SINGLE-OBJECTIVE OPTIMIZATION

where

Xpew = new solution

X = current solution
rand = random number € (0, 1)
Xpest = teacher

Ty = teaching factor (1 or 2)

Xmean = mean of the solution

Xnew = Clamp(xnew; a, b)

Learning Phase

For a given solution X, choose a partner solution X,,.

For a maximization problem,

X +rand - (X =Xp);  f(X) > f(Xp)
X —rand - (X = Xp);  f(X) < f(X5)

Xnew =

For a minimization problem,

X +rand - (X —=Xp);  f(X) < f(Xp)
X —rand - (X =Xp);  f(X) > f(Xp)

Xnew =

4.3.2 Particle Swarm Optimization (PSO)

[Particle Swarm Optimization (PSO)|

The movement of the particles is given by,

Vi(tﬂ) = in(t) + cyrand; - (Pbest,i - th)) + corands - (GbeSt N th))
x (D) _ th) I V§t+1)

1

4.3.3 Grey Wolf Optimization (GWO)

[Grey Wolf Optimization (GWO)|

x4 x4 (Y
3

X(t+1]

Aj=2a-rand—a | Ay =2a-rand —a | A3 =2a-rand —a
Ci =2 -rand Cy =2 -rand C3 =2-rand

Dy =[Ci Xy —X| | Dg = ‘CQXB —X’ Ds = |C3Xs — X|
X1 =Xg—A1Dgy Xy = X(g — AQD]?, X3 =Xs — A3Ds
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Multiobjective Optimization
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Glossary

FONC First-Order Necessary Condition 8H10]
GWO Grey Wolf Optimization

KKT Karush-Kuhn-Tucker

LPP Linear Programming Problem 3} [6]
OT Optimization Techniques

PSO Particle Swarm Optimization i}

RHS Right-Hand Side
RRG Rupak R. Gupta

SOSC Second-Order Sufficient Condition [9]
TLBO Teaching—Learning-Based Optimization

VJTI Veermata Jijabai Technological Institute
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