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Chapter 1
Numerical Linear Algebra

1.1 Foundations

Numerical Linear Algebra (NLA) is the study of numerical methods to find approximate solutions

of real-time problems to save time.

1.1.1 Elementary Row Operations

The elementary row operations that can be performed on a matrix are as follows:

• Scaling: A row Ri can be scaled by a scalar λ as Ri −→ λRi. This scales the determinant

of the matrix by λ.

• Vector addition: A row vector Rj scaled by a scalar λ can be added to a row vector Ri

as Ri −→ Ri + λRj . This has no effect on the determinant of the matrix.

• Swap: Two rows Ri and Rj can be swapped as Ri ←→ Rj . This negates the determinant

of the matrix.

Row Echelon Form

Transforming a matrix to a upper triangular matrix by elementary row transformations produces

what is called the “row echelon form” of the matrix.

For example, 
a11 · · · a1i · · · a1n

a21 · · · a2i · · · a2n
...

. . .
...

. . .
...

an1 · · · ani · · · ann

 ∼

a′11 · · · a′1i · · · a′1n

0 · · · a′2i · · · a′2n
...

. . .
...

. . .
...

0 · · · 0 · · · a′nn


Pivot elements The first non-zero elements of every row of a matrix in row echelon form. In

the above example, a′11, a
′
2i, . . . , a

′
nn form the pivot elements.

1.1.2 Matrix Augmentation

An augmented matrix A|B is the matrix obtained when a matrix B is appended at the end of

matrix A.
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For example, consider A :=

[
a11 a12 a13

a21 a22 a23

]
∈M2×3(F)1 and B :=

[
b11 b12

b21 b22

]
∈M2×2(F)

The augmented matrix A|B is given by,

A|B =

[
a11 a12 a13 b11 b12

a21 a22 a23 b21 b22

]
∈M2×5(F)

1.1.3 Eigenvalues and Eigenvectors

Eigenvectors

A matrix performs a linear transformation when it is multiplied with a vector. The vectors which

are only scaled but not rotated when multiplied by a given matrix are known as the eigenvectors

of that matrix.

Eigenvalues

The factor by which a given eigenvector is scaled on multiplication with its matrix is known as

the eigenvalue of the given matrix for that particular eigenvector.

Ax = λx (1.1)

Eigenvector Eigenvalue

1.1.4 Scalar Product

If vectors u :=
[
u1 u2 · · · un

]⊤
and v :=

[
v1 v2 · · · vn

]⊤
∈ Rn, then their scalar

product (or dot product) is defined as,

u · v := u1v1 + u2v2 + · · ·+ unvn (1.2)

Norm

The norm of a vector v :=
[
v1 v2 · · · vn

]⊤
∈ Rn is defined as:

∥v∥ :=
√
v · v =

√
v21 + v22 + · · ·+ v2n (1.3)

1.2 Linear System of Equations

A system of equations is said to be linear if each equation is a linear combination of all the the

unknowns.

An n× n system is as follows:

a11x1 + a12x2 + · · · + a1n = b1

a21x1 + a22x2 + · · · + a2n = b2
...

...
. . .

...
...

an1x1 + an2x2 + · · · + ann = bn

1F represents the scalar field, which may be R or C.
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The above system can be represented as AX = B, where:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

 , A ∈Mn×n(F)

and B =


b1

b2
...

bn

 , B ∈ Fn

1.3 Direct Methods

Direct methods are the methods which produce exact results. These methods are typically more

expensive computationally.

1.3.1 Gauss Elimination

In Gaussian elimination method, we perform elementary row operations on the augmented matrix

A|B to convert it into an upper triangular matrix.

∴ A|B =


a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

an1 an2 · · · ann bn



∼


a′11 a′12 · · · a′1n b′1

0 a′22 · · · a′2n b′2
...

...
. . .

...
...

0 0 · · · a′nn b′n


Upon back-substitution, we get

a′nnxn = b′n =⇒ xn =
b′n
a′nn

a′(n−1)(n−1)xn−1 + a′(n−1)nxn = b′n−1 and so on.

The time complexity of Gauss elimination is O
(
2n3/3

)
for a system of order n.

Q.1. Solve using Gauss elimination:

x+ 2y + z = 3

2x+ 3y + 3z = 10

3x− y + 2z = 13
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We have the system of equations,

1x+ 2y + 1z = 3

2x+ 3y + 3z = 10

3x− 1y + 2z = 13

The above system can be written as,1 2 1

2 3 3

3 −1 2


xy
z

 =

 3

10

13


By Gauss elimination method, 1 2 1 3

2 3 3 10

3 −1 2 13

 ∼
 1 2 1 3

0 −1 1 4

0 −7 −1 4

 (
R2 −→ R2 − 2R1

R3 −→ R3 − 3R1

)

∼

 1 2 1 3

0 −1 1 4

0 0 −8 −24

 (
R3 −→ R3 − 7R1

)

Upon back-substitution, we get

−8z = −24 =⇒ z = 3

−y + z = 4 =⇒ y = −1

x+ 2y + z = 3 =⇒ x = 2

Therefore, (x, y, z) = (2,−1, 3) . (Ans.)

1.3.2 Gauss-Jordan Elimination

In Gauss-Jordan elimination, we perform elementary row operations on the augmented matrix

A|B to convert it into a diagonal matrix.

∴ A|B =


a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

an1 an2 · · · ann bn



∼


a′11 0 · · · 0 b′1

0 a′22 · · · 0 b′2
...

...
. . .

...
...

0 0 · · · a′nn b′n


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Upon back-substitution, we get

a′nnxn = b′n =⇒ xn =
b′n
a′nn

a′(n−1)(n−1)xn−1 = b′n−1 =⇒ xn−1 =
b′n−1

a′(n−1)(n−1)

...

a′22x2 = b′2 =⇒ x2 =
b′2
a′22

a′11x1 = b′1 =⇒ x1 =
b′1
a′11

The time complexity of Gauss-Jordan elimination is O
(
2n3/3

)
for a system of order n.

Q.2. Solve using Gauss-Jordan elimination:

x+ 2y + z = 3

2x+ 3y + 3z = 10

3x− y + 2z = 13

We have the system of equations,

1x+ 2y + 1z = 3

2x+ 3y + 3z = 10

3x− 1y + 2z = 13

The above system can be written as,1 2 1

2 3 3

3 −1 2


xy
z

 =

 3

10

13


By Gauss-Jordan elmination, 1 2 1 3

2 3 3 10

3 −1 2 13

 ∼
 1 2 1 3

0 −1 1 4

0 −7 −1 4

 (
R2 −→ R2 − 2R1

R3 −→ R3 − 3R1

)

∼

 1 2 1 3

0 −1 1 4

0 0 −8 −24

 (
R3 −→ R3 − 7R1

)

∼

 8 16 0 0

0 −8 0 8

0 0 −8 −24

 (
R1 −→ 8R1 +R3

R2 −→ 8R+ 2R3

)

∼

 8 0 0 16

0 −8 0 8

0 0 −8 −24

 (
R1 −→ R1 + 2R2

)
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Upon back-substitution, we get

−8z = −24 =⇒ z = 3

−8y = 8 =⇒ y = −1

8x = 16 =⇒ x = 2

Therefore, (x, y, z) = (2,−1, 3) . (Ans.)

1.3.3 LU Decomposition

We have the linear system of equations AX = B. We can decompose the coefficient matrix A

as A = LU , where L is a lower triangular matrix while U is an upper triangular matrix.

The time complexity of LU decomposition is O
(
n3/3 + n2

)
for a system of order n, which is

slightly better than Gauss elimination.

A = LU , where L is a lower triangular matrix and U is an upper triangular matrix.

Therefore,

AX = B =⇒ (LU)X = B

=⇒ LUX = B

∴ LY = B, where Y := UX

=⇒ L


y1

y2
...

yn

 =


b1

b2
...

bn

 and A


x1

x2

...

xn

 =


y1

y2
...

yn


We can define the matrices L and U slightly differently depending on the leading diagonal, which

corresponds to two methods.

Crout’s Method

A = LU, where L :=


l11 0 · · · 0

l21 l22 · · · 0
...

...
. . .

...

ln1 ln2 · · · lnn

 and U :=


1 u12 · · · u1n

0 1 · · · u2n

...
...

. . .
...

0 0 · · · 1


Doolittle’s Method

A = LU, where L :=


1 0 · · · 0

l21 1 · · · 0
...

...
. . .

...

ln1 ln2 · · · 1

 and U :=


u11 u12 · · · u1n

0 u22 · · · u2n

...
...

. . .
...

0 0 · · · unn


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Q.3. Solve using LU decomposition:

2x+ 3y + z = −1

5x+ y + z = 9

3x+ 2y + 4z = 11

We have the system of equations,

2x+ 3y + 1z = −1

5x+ 1y + 1z = 9

3x+ 2y + 4z = 11

The above system can be written as,2 3 1

5 1 1

3 2 4


xy
z

 =

−19
11

 , or AX = B.

Using Crout’s method,

Let A := LU , where L :=

l11 0 0

l21 l22 0

l31 l32 l33

 and U :=

1 u12 u13

0 1 u23

0 0 1

.
By LU decomposition,

A = LU

∴

2 3 1

5 1 1

3 2 4

 =

l11 0 0

l21 l22 0

l31 l32 l33


1 u12 u13

0 1 u23

0 0 1



∴

2 3 1

5 1 1

3 2 4

 =

l11 l11u12 l11u13

l21 l21u12 + l22 l21u13 + l22u23

l31 l31u12 + l32 l31u13 + l32u23 + l33



Upon comparing like terms and evaluating, L =

2 0 0

5 −13/2 0

3 −5/2 40/13

 and U =

1 3/2 1/2

0 1 3/13

0 0 1

.
Now,

AX = B

=⇒ (LU)X = B =⇒ L(UX) = B

∴ LY = B

(
where Y = UX :=

[
a b c

]⊤)

∴

2 0 0

5 −13/2 0

3 −5/2 40/13


ab
c

 =

−19
11


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Upon back-substitution, we get

2a = −1 =⇒ a = −0.5

5a− (13/2)b = 9 =⇒ b = −23/13

3a− (5/2)b+ (40/3)c = 11 =⇒ c = 21/8

=⇒ Y =

[
−
1

2
−
23

13

21

8

]⊤
= UX

∴

1 3/2 1/2

0 1 3/13

0 0 1


xy
z

 =

 −1/2

−23/13

21/8



Upon back-substitution, we get

z = 21/8 =⇒ z = 21/8

y + (3/13)z = −23/13 =⇒ y = −19/8

x+ (3/2)y + (1/2)z = −1/2 =⇒ x = 7/4

Therefore, (x, y, z) =

(
7

4
,−

19

8
,
21

8

)
. (Ans.)

Q.4. Solve using Crout’s method as well as Doolittle’s method:

3x+ 5y + 2z = 8

8y + 2z = −7

6x+ 2y + 8z = 26

We have the system of equations,

3x+ 5y + 2z = 8

0x+ 8y + 2z = −7

6x+ 2y + 8z = 26

The above system can be written as,3 5 2

0 8 2

6 2 8


xy
z

 =

 8

−7
26

 , or AX = B.

Using Crout’s method,

Let A = LU , where L :=

l11 0 0

l21 l22 0

l31 l32 l33

 and U :=

1 u12 u13

0 1 u23

0 0 1

.
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By LU decomposition,

A = LU

∴

3 5 2

0 8 2

6 2 8

 =

l11 0 0

l21 l22 0

l31 l32 l33


1 u12 u13

0 1 u23

0 0 1



∴

3 5 2

0 8 2

6 2 8

 =

l11 l11u12 l11u13

l21 l21u12 + l22 l21u13 + l22u23

l31 l31u12 + l32 l31u13 + l32u23 + l33



Upon comparing like terms and evaluating, L =

3 0 0

0 8 0

6 −8 6

 and U =

1 5/3 2/3

0 1 1/4

0 0 1

.
Now,

AX = B

=⇒ (LU)X = B =⇒ L(UX) = B

∴ LY = B

(
where Y = UX :=

[
a b c

]⊤)

∴

3 0 0

0 8 0

6 −8 6


ab
c

 =

 8

−7
26



Upon back-substitution, we get

3a = 8 =⇒ a = 8/3

8b = −7 =⇒ b = −7/8

6a− 8b+ 6c = 26 =⇒ 1/2

=⇒ Y =

[
8

3
−
7

8

1

2

]⊤
= UX

∴

1 5/3 2/3

0 1 1/4

0 0 1


xy
z

 =

 8/3

−7/8

1/2



Upon back-substitution, we get

z = 1/2 =⇒ z = 1/2

y + (1/4)z = −7/8 =⇒ y = −1

x+ (5/3)y + (2/3)z = 8/3 =⇒ x = 4
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Using Doolittle’s method,

Let A = LU , where L :=

 1 0 0

l21 1 0

l31 l32 1

 and U :=

u11 u12 u13

0 u22 u23

0 0 u33

.
By LU decomposition,

A = LU

∴

3 5 2

0 8 2

6 2 8

 =

 1 0 0

l21 1 0

l31 l32 1


u11 u12 u13

0 u22 u23

0 0 u33



∴

3 5 2

0 8 2

6 2 8

 =

 u11 u12 u13

l21u11 l21u12 + u22 l21u13 + u23

l31u11 l31u12 + l32u22 l31u13 + l32u23 + u33



Upon comparing like terms and evaluating, L =

1 0 0

0 1 0

2 −1 1

 and U =

3 5 2

0 8 2

0 0 6

.
Now,

AX = B

=⇒ (LU)X = B =⇒ L(UX) = B

∴ LY = B

(
where Y = UX :=

[
a b c

]⊤)

∴

1 0 0

0 1 0

2 −1 1


ab
c

 =

 8

−7
26



Upon back-substitution, we get

a = 8

b = −7

2a− b+ c = 26 =⇒ c = 3

=⇒ Y =
[
8 −7 3

]⊤
= UX

∴

3 5 2

0 8 2

0 0 6


xy
z

 =

 8

−7
3


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Upon back-substitution, we get

6z = 3 =⇒ z = 1/2

8y + 2z = −7 =⇒ y = −1

3x+ 5y + 2z = 8 =⇒ x = 4

Therefore, (x, y, z) =

(
4,−1,

1

2

)
. (Ans.)

Cholesky’s Method

IfA is a symmetric and positive definite2 matrix, thenA = LL⊤, where L :=


l11 0 · · · 0

l21 l22 · · · 0
...

...
. . .

...

ln1 ln2 · · · lnn

.

1.4 Indirect Methods

As seen above, the direct methods are computationally very expensive, so for most practical ap-

plications we prefer indirect methods to approximate the solution within a reasonable tolerance.

1.4.1 Gauss-Jacobi Method

Consider the linear system of equations:

a11x1 + a12x2 + · · · + a1n = b1

a21x1 + a22x2 + · · · + a2n = b2
...

...
. . .

...
...

an1x1 + an2x2 + · · · + ann = bn

If the absolute values of pivot (diagonal) coefficients are greater than the absolute value of the

sum of other coefficients in the same row, then we can apply the Gauss-Jacobi algorithm to

approximate the solution.

|a11| > |a12| + |a13| + . . . + |a1n|
|a22| > |a21| + |a23| + . . . + |a2n|
...

...
...

. . .
...

|ann| > |an1| + |an2| + . . . +
∣∣an(n−1)

∣∣
We shall start with an initial guess for the solution

[
x
(0)
1 x

(0)
2 · · · x

(0)
n

]⊤
and follow the

2∀x ∈ Rn x⊤Ax > 0. In other words, all eigenvalues are real and positive.
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recurrence relation:

x
(k+1)
1 :=

1

a11

(
b1 − a12x

(k)
2 − a13x

(k)
3 − · · · − a1nx

(k)
n

)
x
(k+1)
2 :=

1

a22

(
b2 − a21x

(k)
1 − a23x

(k)
3 − · · · − a2nx

(k)
n

)
...

...

x(k+1)
n :=

1

ann

(
bn − an1x

(k)
1 − an2x

(k)
2 − · · · − an(n−1)x

(k)
n−1

)
1.4.2 Gauss-Seidel Method

The Gauss-Seidel algorithm is an optimization to the Gauss-Jacobi algorithm, where the variables

are updated with updated values of the previous computed variables within the same iteration.

x
(k+1)
1 :=

1

a11

(
b1 − a12x

(k)
2 − a13x

(k)
3 − · · · − a1nx

(k)
n

)
x
(k+1)
2 :=

1

a22

(
b2 − a21x

(k+1)
1 − a23x

(k)
3 − · · · − a2nx

(k)
n

)
...

...

x(k+1)
n :=

1

ann

(
bn − an1x

(k+1)
1 − an2x

(k+1)
2 − · · · − an(n−1)x

(k+1)
n−1

)
Q.5. Solve using Gauss-Jacobi and Gauss-Seidel methods:

10x− 5y − 2z = 3

4x− 10y + 3z = −3

x+ 6y + 10z = −3

We can observe that:

|10| > |−5|+ |−2|

|−10| > |4|+ |3|

|10| > |1|+ |6|

Thus, the solution to the given system can be approximated using Gauss-Jacobi method.

The recurrence relation would be of the form:

x(k+1) =
1

10

(
3 + 5y(k) + 2z(k)

)
y(k+1) =

1

10

(
3 + 4x(k) + 3z(k)

)
z(k+1) = − 1

10

(
3 + x(k) + 6y(k)

)
Let the initial approximation be x(0) := 0, y(0) := 0, z(0) := 0.
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Using Gauss-Jacobi method,

Iteration 1

x(1) =
1

10

(
3 + 5y(0) + 2z(0)

)
= 0.3

y(1) =
1

10

(
3 + 4x(0) + 3z(0)

)
= 0.3

z(1) = − 1

10

(
3 + x(0) + 6y(0)

)
= −0.3

Iteration 2

x(2) =
1

10

(
3 + 5y(1) + 2z(1)

)
= 0.39

y(2) =
1

10

(
3 + 4x(1) + 3z(1)

)
= 0.33

z(2) = − 1

10

(
3 + x(1) + 6y(1)

)
= −0.51

Iteration 3

x(3) =
1

10

(
3 + 5y(2) + 2z(2)

)
= 0.363

y(3) =
1

10

(
3 + 4x(2) + 3z(2)

)
= 0.303

z(3) = − 1

10

(
3 + x(2) + 6y(2)

)
= −0.537

Iteration 4

x(4) =
1

10

(
3 + 5y(3) + 2z(3)

)
= 0.3441

y(4) =
1

10

(
3 + 4x(3) + 3z(3)

)
= 0.2841

z(4) = − 1

10

(
3 + x(3) + 6y(3)

)
= −0.5181

Iteration 5

x(5) =
1

10

(
3 + 5y(4) + 2z(4)

)
= 0.33840

y(5) =
1

10

(
3 + 4x(4) + 3z(4)

)
= 0.28221

z(5) = − 1

10

(
3 + x(4) + 6y(4)

)
= −0.50487

Iteration 6

x(6) =
1

10

(
3 + 5y(5) + 2z(5)

)
≈ 0.3401

y(6) =
1

10

(
3 + 4x(5) + 3z(5)

)
≈ 0.2839

z(6) = − 1

10

(
3 + x(5) + 6y(5)

)
≈ −0.5031

Therefore, our solution is
[
x y z

]⊤
≈
[
0.3401 0.2839 −0.5031

]⊤

Page 17 of 98



by Gauss-Jacobi in 6 iterations. (Ans.)

Using Gauss-Seidel method,

Iteration 1

x(1) =
1

10

(
3 + 5y(0) + 2z(0)

)
= 0.3

y(1) =
1

10

(
3 + 4x(1) + 3z(0)

)
= 0.42

z(1) = − 1

10

(
3 + x(1) + 6y(1)

)
= −0.582

Iteration 2

x(2) =
1

10

(
3 + 5y(1) + 2z(1)

)
= 0.3936

y(2) =
1

10

(
3 + 4x(2) + 3z(1)

)
= 0.28284

z(2) = − 1

10

(
3 + x(2) + 6y(2)

)
= −0.509064

Iteration 3

x(3) =
1

10

(
3 + 5y(2) + 2z(2)

)
= 0.3396072

y(3) =
1

10

(
3 + 4x(3) + 3z(2)

)
= 0.28312368

z(3) = − 1

10

(
3 + x(3) + 6y(3)

)
= −0.503834928

Iteration 4

x(4) =
1

10

(
3 + 5y(3) + 2z(3)

)
≈ 0.3408

y(4) =
1

10

(
3 + 4x(4) + 3z(3)

)
≈ 0.2852

z(4) = − 1

10

(
3 + x(4) + 6y(4)

)
≈ −0.5052

Therefore, our solution is
[
x y z

]⊤
≈
[
0.3408 0.2852 −0.5052

]⊤
by Gauss-Seidel in 4 iterations. (Ans.)
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1.4.3 Power method to find Eigenvalues

Dominant eigenvalue

Let λ1, λ2, . . . , λn be n eigenvalues of a square matrix of order n.

If |λ1| > |λi| ∀i ∈ J2, nK then λ1 is called the dominant eigenvalue and its corresponding

eigenvector is called the dominant eigenvector.

Power method

Let A be a square matrix of order n. Start with an initial guess: say x0 is the first approximation

of the dominant eigenvector.

Let x0 :=
[
1 1 · · · 1

]⊤
. We’ll follow the recurrence relation:

xk+1 := Axk
Scale−→ 1

m(k+1)
x(k+1), (1.4)

where m(k+1) is the magnitude of the highest component in the vector x(k+1). We scale the

vector each iteration so that the values do not explode and precision is maintained while using

floating point arithmetic.

Theorem 1. If x is an eigenvector of a matrix A, then its corresponding eigenvalue is given by

λ =
Ax · x
x · x

=
Ax · x
∥x∥2

,

Q.6. Find the approximated dominant eigenvalue and eigenvector of the matrix

A =

 1 2 0

−2 1 2

1 3 1

 .

Consider the initial guess x0 :=
[
1.00 1.00 1.00

]⊤
.

For the sake of our sanity, we will stay precise upto 2 decimal places.

∴ x1 := Ax0 =

 1 2 0

−2 1 2

1 3 1


1.001.00

1.00

 =

3.001.00

5.00

 Scale−→

0.600.20

1.00



∴ x2 := Ax1 =

 1 2 0

−2 1 2

1 3 1


0.600.20

1.00

 =

1.001.00

2.20

 Scale−→

0.450.45

1.00



∴ x3 := Ax2 =

 1 2 0

−2 1 2

1 3 1


0.450.45

1.00

 =

1.351.55

2.80

 Scale−→

0.500.50

1.00


︸ ︷︷ ︸

Dominant eigenvector

(Ans.)
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From theorem 1, the dominant eigenvalue λ is given by

λ =
Ax · x
x · x

=

 1 2 0

−2 1 2

1 3 1


0.500.50

1.00

 ·
0.500.50

1.00


0.500.50

1.00

 ·
0.500.50

1.00


=

1.501.50

3.00

 ·
0.500.50

1.00


0.500.50

1.00

 ·
0.500.50

1.00


=

(1.50)(0.50) + (1.50)(0.50) + (3.00)(1.00)

(0.50)
2
+ (0.50)

2
+ (1.00)

2

=
0.75 + 0.75 + 3.00

0.25 + 0.25 + 1.00

=
4.50

1.50
=⇒ λ ≈ 3.00

(Ans.)
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Chapter 2
Quadratic Forms

2.1 Foundations

2.1.1 Rank of a Matrix

The rank of a matrix is the number of non-zero rows it has when it is in Row-Echelon form.

A =



α11 α12 α13 α14 · · · 0

0 α22 α23 α24 · · · 0

0 0 0 α34 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · α(n−1)(n)

0 0 0 0 · · · 0


n×n

The above matrix has n− 1 non-zero rows in it’s reduced row echelon form and hence has rank

n− 1.

2.1.2 Column Space

The column space of a matrix A, is just the subspace spanned by it’s columns. It is also known

as the Image or the Range of the matrix A.

Col Space(A) = Im(A) = {A · x |x ∈ V }

where A is a transformation from V to W .

Why is the Image of A a subspace?

Consider a matrix A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 and a vector x =

x1

x2

x3

.

Since the vector A · x is given as

a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3

, which is essentially just a linear

combination of the columns of A. The set of all elements A · x is just a subspace in W .
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2.1.3 Null Space

The null space of a matrix A, is the set of vectors which are mapped to 0W when transformed

by A. It is also known as the Kernel of the matrix A.

Null Space(A) = rank(A) = {x ∈ V |A · x = 0W}

where A is a transformation from V to W .

2.1.4 Similarity and Diagonalisability

Similarity

A matrix A is said to be similar to another matrix B, if there exists and invertible matrix P

such that:

B = P−1AP

The similarity relation is an equivalence relation.

Diagonalisability

A matrix A is said to be diagonalisable iff it is similar to a diagonal matrix D.

D=P−1AP

Diagonal Matrix Similar

The most important theorem about diagonalisability is as follows:

Theorem 2. An n× n matrix A is diagonalisable if and only if there is an invertible matrix P

given by

P =
[
X1 X2 · · · Xn

]
where the Xk are eigenvectors of A.

We accept this theorem without a proof.

2.2 Quadratic Forms

The expression of the form Q(x) = k11x
2
1+k12x1x2+k13x1x3+ · · ·+k22x

2
2+ · · ·+knnx

2
n, where

the degree of each term is 2, is called a quadratic form.

Every Quadratic Form (QF) can be represented in the following way:

Q : Rn → R

Q(x) = x⊤ A x

Associated Matrix
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2.2.1 Associated matrices for common vector spaces

The vector space R2

For the vector space R2, with vectors of the form x =
[
x1 x2

]⊤
, consider the associated matrix

A =

[
a11 a12

a21 a22

]
[
Q(x)

]
= x⊤Ax

=
[
x1 x2

] [a11 a12

a21 a22

][
x1

x2

]

=
[
x1 x2

] [a11x1 + a12x2

a21x1 + a22x2

]
∴
[
k11x

2 + k12x1x2 + k22x
2
]
=
[
a11x

2
1 + (a12 + a21)x1x2 + a22x

2
2

]
Comparing similar terms, we get a11 = k11, a12+a21 = k12 and a22 = k22. We prefer symmetric

matrices as they have a few special properties which will help us. Hence, we can say that the

associated matrix A is

A =

[
k11 k12/2

k12/2 k22

]

The vector space R3

Following a similar process for R2, the associated matrix for a QF in R3 is

A =

 k11 k12/2 k13/2

k12/2 k22 k23/2

k13/2 k23/2 k33



2.2.2 Canonical (�) Form

The canonical form of a QF is a corresponding QF where only the square terms exist. e.g.

f(x, y) = ax2 + by2

To convert a given QF into it’s canonical form, we convert the associated matrix into a similar

diagonal matrix. Since we have taken A(the associated matrix) to be a symmetric matrix, it is

always diagonalisable by the Spectral Theorem.

It is important to note that for a given QF, there exists a unique canonical form of the form

λ1x
2
1 + λ2x

2
2 + · · ·+ λnx

2
n =

∑n
i=1 λix

2
i where λi are the eigenvalues of the matrix A.

2.2.3 Definiteness of Eigenvalues

We define the nature of a quadratic form x⊤Ax as follows:

• Positive definite: x⊤Ax > 0 ;∀x ̸= 0

• Positive semi-definite: x⊤Ax ≥ 0 ;∀x ̸= 0

• Negative definite: x⊤Ax < 0 ;∀x ̸= 0

• Negative semi-definite: x⊤Ax ≤ 0 ;∀x ̸= 0
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• Indefinite: x⊤Ax > 0 ∧ x⊤Ax < 0

Alternatively, we can determine the nature from the eigenvalues of the associated matrix:

• Positive definite: ∀λ.λ > 0

• Positive semi-definite: ∀λ.λ ≥ 0

• Negative definite: ∀λ.λ < 0

• Negative semi-definite: ∀λ.λ ≤ 0

• Indefinite: λ > 0 ∧ λ < 0

Sylvester’s Criterion

Sylvester’s Criterion provides a straightforward method to determine whether a given real, sym-

metric matrix A is positive definite, negative definite, or indefinite. Instead of computing eigen-

values, which can be computationally expensive, this criterion relies on Leading Principal

Minors, making it a more efficient alternative.

Leading Principal Minors. A Leading Principal Minor (LPM) of a matrix is the determinant

of its top-left k × k submatrix. For an n× n symmetric matrix A, the k-th LPM is defined as:

∆k = det(Ak), k = 1, 2, . . . , n,

where Ak is the submatrix formed by taking the first k rows and columns of A.

For example, for a 3× 3 matrix:

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

the LPMs are:

∆1 = a11, ∆2 = det

[
a11 a12

a21 a22

]
, ∆3 = det(A).

Why Use Sylvester’s Criterion? While eigenvalues can also determine definiteness, com-

puting them is much more challenging:

• Finding eigenvalues involves solving the characteristic equation det(A− λI) = 0, which is

a polynomial of degree n.

• Polynomials of degree greater than 4 do not have general solutions (as per Abel-Ruffini

theorem). Thus, eigenvalues can only be explicitly computed for matrices up to 4× 4.

• In contrast, Sylvester’s Criterion only requires computing a series of determinants, which

is computationally inexpensive for most practical applications.

The Criterion. Sylvester’s Criterion states:

• A is positive definite if all the LPMs are positive:

∆1 > 0, ∆2 > 0, . . . , ∆n > 0.
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• A is negative definite if the signs of the LPMs alternate, starting with −:

∆1 < 0, ∆2 > 0, ∆3 < 0, . . . .

• A is indefinite if the sequence of LPMs does not meet either of the above criteria.

2.3 Principal Axes Theorem

If A is an n × n symmetric matrix associated with the quadratic form x⊤Ax and if Q is an

orthonormal matrix such that Q−1AQ = Q⊤AQ = D, then the change of variable x = Qy

transforms the quadratic form x⊤Ax into the quadratic form y⊤Dy.

x⊤Ax 7→ y⊤Dy = λ1x
2
1 + λ2x

2
2 + · · ·+ λnx

2
n

Proof.

x⊤Ax = (Qy)⊤A(Qy)

= (y⊤Q⊤)A(Qy)

= y(Q⊤AQ)y

∴ x⊤Ax = y⊤Dy

Note:

Rank:- Number of non-zero eigenvalues/Rank of associated matrix.

Index:- Number of positive eigenvalues

Signature:- Difference between the number of positive and number of negative eigenvalues.

Q.1. Determine the nature, rank, index, signature of the quadratic form: x2
1 + 2x2

2 + 3x2
3 +

2x2x3 − 2x3x1 + 2x1x2. Also transform it into it’s canonical form.

The associated matrix of the above quadratic form is A =

 1 1 −1
1 2 1

−1 1 3

.
Finding the eigenvalues of A using the characteristic equation.

det(A− λI) = 0

∴ det


1− λ 1 −1

1 2− λ 1

−1 1 3− λ


 = 0

∴ λ3 − 6λ2 + 8λ+ 2 = 0

∴ λ ∈ {−0.214 . . . , 3.675 . . . , 2.539 . . . }

The above QF is indefinite , has rank = 3 , has index = 2 and signature = 1 . (Ans.)
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Converting the above QF to canonical form, we get x⊤Ax 7→ y⊤Dy, whereD =

λ1 0 0

0 λ2 0

0 0 λ3

.
Thus, the canonical form is (−0.214 . . . )y21 + (3.675 . . . )y22 + (2.539 . . . )y23 . (Ans.)

2.4 Cholesky’s Factorization

In section 1.3.3, we defined a numerical method to find the exact solution of a system of linear

equations by decomposing a symmetric, positive definite matrix into LL⊤ where L is a lower

triangular matrix.

Q.2. Decompose the matrix A =

1 2 3

2 8 22

3 22 82

 using Cholesky factorization.

Finding the eigenvalues of A using the characteristic equation.

det(A− λI) = 0

∴ det


1− λ 2 3

2 8− λ 22

3 22 82− λ


 = 0

∴ λ3 − 91λ2 + 249λ− 36 = 0

∴ λ ∈ {88.1808 . . . , 2.665 . . . , 0.153 . . . }

Since, all the eigenvalues are positive in nature, A is a positive definite matrix. A is also

symmetric in nature. A can be decomposed to LL⊤.

Consider, L =

l11 0 0

l21 l22 0

l31 l32 l33

.
∵ LL⊤ = A

∴ A = LL⊤

∴

1 2 3

2 8 22

3 22 82

 =

l11 0 0

l21 l22 0

l31 l32 l33


l11 l21 l31

0 l22 l32

0 0 l33



∴

1 2 3

2 8 22

3 22 82

 =

 l211 l11l21 l11l31

l11l21 l221 + l222 l21l31 + l22l32

l11l31 l21l31 + l22l32 l231 + l232 + l233


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Comparing similar terms, we find the values:

l11 =
√
1 = 1

l21 = 2/1 = 2

l31 = 3/1 = 3

l22 =
√

8− 22 =
√
4 = 2

l32 = (22 − 6)/2 = 16/2 = 8

l33 =
√
82− 32 − 82 =

√
9 = 3

(We consider only the positive roots.)

Thus, A = LL⊤, L =

1 0 0

2 2 0

3 8 3

 . (Ans.)

Q.3. Transform 2x2
1 + x2

2 − 3x2
3 − 8x2x3 − 4x3x1 + 12x1x2 into it’s canonical form and find the

change of variable.

The associated matrix of the above quadratic form is A =

 2 6 −2
6 1 −4
−2 −4 −3

.
Finding the eigenvalues of A using the characteristic equation.

det(A− λI) = 0

∴ det


1− λ 6 −2

6 1− λ −4
−2 −4 −3− λ


 = 0

∴ λ3 − 63λ− 162 = 0

∴ λ ∈ {−6,−3, 9}

Finding the eigenvectors of A:

For λ = −6:

(A+ 6I) ·X1 = 0R3

∴

 8 6 −2
6 7 −4
−2 −4 3


x1

x2

x3

 =

00
0


From Cramer’s rule, X1 =

[
−1 2 2

]⊤
For λ = −3:

(A+ 3I) ·X2 = 0R3

∴

 5 6 −2
6 4 −4
−2 −4 0


x1

x2

x3

 =

00
0


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From Cramer’s rule, X2 =
[
2 −1 2

]⊤
For λ = 9:

(A− 9I) ·X3 = 0R3

∴

−7 6 −2
6 −8 −4
−2 −4 −12


x1

x2

x3

 =

00
0


From Cramer’s rule, X3 =

[
−2 −2 1

]⊤
We know that for diagonalisability, there must exist an invertible matrix P (here Q), such

that P−1AP . (From theorem 2)

If P is orthogonal then, P−1 = P⊤. Hence, the orthogonal matrix Q =
[
X1 X2 X3

]
is the required matrix. If we normalise the vectors, then we get the eigenvalues as the

coefficients of the canonical QF.

The canonical form of the above equation is −6y21 − 3y22 + 9y23 . (Ans.)

The change of variable is x =

− 1/3 2/3 − 2/3

2/3 − 1/3 − 2/3

2/3 2/3 1/3

y . (Ans.)

2.5 Constraint Optimisation

If we have been given a quadratic form x⊤Ax with the constraint, ∥x∥ = 1, then:

• The largest (maximum) value of Q(x) is found to be λmax (the maximum eigenvalue) for

the corresponding eigenvector scaled so that it’s norm is 1.

• The smallest (minimum) value of Q(x) is found to be λmin (the minimum eigenvalue) for

the corresponding eigenvector scaled so that it’s norm is 1.

Q.4. Find the minimum and maximum value of Q(x) = x2
1 + 4x1x2 − 2x2

2 with the constraint

x⊤x = 1.

The above constraint can be interpreted as follows:x⊤x = 1 =⇒
[
x1 x2

]
·

[
x1

x2

]
=⇒

x2
1 + x2

2 = 1

The associated matrix of the above quadratic form is A =

[
1 2

2 −2

]
.

Finding the eigenvalues of A using the characteristic equation.

det(A− λI) = 0

∴ det

([
1− λ 2

2 −2− λ

])
= 0

∴ λ2 + λ− 6 = 0

∴ λ ∈ {−3, 2}

Finding the eigenvectors of A:
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For λ = −3:

(A+ 3I)X1 = 0R2

∴

[
4 2

2 1

][
x1

x2

]
=

[
0

0

]

From Cramer’s Rule: X1 =
[
1 −2

]⊤
. Normalising the vector: X1 =

[
1/

√
5 − 2/

√
5

]⊤
.

For λ = 2:

(A− 2I)X2 = 0R2

∴

[
−1 2

2 −4

][
x1

x2

]
=

[
0

0

]

From Cramer’s Rule: X2 =
[
2 1

]⊤
. Normalising the vector: X2 =

[
2/

√
5 1/

√
5

]⊤
.

Thus, from the theory of constraint optimisation, we know that the maximum value of

Q(x) is 2 for x =

[
2/

√
5

1/
√
5

]
and the minimum value of Q(x) is −3 for x =

[
1/

√
5

− 2/
√
5

]
. (Ans.)
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Chapter 3
Inner Product Spaces

3.1 Foundations

Throughout this chapter we will go through the already-known concepts regarding vectors in

3-dimensional space and generalise them for any valid vector space.

3.1.1 Vectors

A vector is the most important mathematical structure for Computer Scientists and Engineers.

The notion of a vector in the mathematical sense is very different from what you would expect

vectors to be in the traditional sense of the word (magnitude and direction). In mathematics, a

vector is simply a structure which usually contains more than one element (usually numbers) in

a specific predefined format. This format may be a list, grid or anything else.

3.1.2 Vector Spaces

A vector space is a set of elements (usually called vectors) defined over a field F and having the

operations of addition(+) and scalar multiplication(·) (from the field)1

Vector spaces follow a few basic properties which have been discussed in short here.

Consider a generic vector space V and the vectors u, v and w and the scalars k, l,m from the

field F.

Closure Properties

1. Vector Addition is closed in V .

u+ v ∈ V

2. Scalar multiplication of vectors is closed in V .

k · u ∈ V

Addition Properties

3. Vector addition is commutative. u+ v = v + u

4. Vector addition is associated. u+ (v +w) = (v + u) +w

1The addition and scalar multiplication operations are purely notational. They may be defined in any specific
way that we would like.
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5. There exists a special vector 0V ∈ V for all u ∈ V such that: u+ 0V = u

(Existence of additive identity).

6. For all u ∈ V , there exist −u ∈ V such that: u+ (−u) = 0V

(Existence of additive inverse).

Multiplication Properties

7. Compatibility with field multiplication. k · (l · u) = (kl) · u

8. Distribution of scalar multiplication over vector addition. k · (u+ v) = k · u+ k · v

9. Distribution of scalar multiplication over field addition. (k + l) · u = k · u+ l · u

10. There exists a special scalar 1V ∈ F for all u ∈ V such that: 1V · u = u

(Existence of multiplicative identity).

3.1.3 The vector space Rn

The vector space defined over the set of Real Numbers (R) with the vectors of the form v =[
v1 v2 · · · vn

]⊤
, is commonly known as the n-dimensional Euclidean Space when equipped

with the standard dot product. This is one of the most familiar and widely studied vector spaces

in mathematics.

3.1.4 Length of a vector

The length of a vector for 3-dimensional Euclidean Space over a real field is known defined as

the distance of the point to which the vector points from the origin of the vector space and is

equal to |v⃗| =
√
x2 + y2 + z2 for a vector v⃗ = xî+ yĵ + zk̂.

3.2 Inner Product

The inner product is the generalization of the dot product defined for n-dimensional Euclidean

Space for any generic vector space.

Formally, the inner product is a function defined for a vector space over a field F that takes in

an ordered pair of vectors, (u,v) and assigns to them, a number ⟨u,v⟩ ∈ F:

f : V × V → F

f(u,v) = ⟨u,v⟩

where ⟨u,v⟩ is just a notational placeholder for the inner product.

3.2.1 Rules for Inner Products

The following rules must be followed by a binary function for it to be considered a valid inner

product.

1. Linearity: ⟨λ · u+ v,w⟩ = λ ⟨u,w⟩+ ⟨v,w⟩.

2. Conjugate Symmetry: ⟨u,v⟩ = ⟨v,u⟩.

3. Non-negativity: ∀u ∈ V ⟨u,u⟩ ≥ 0F ∧ ⟨u,u⟩ = 0F ⇐⇒ u = 0V.
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3.2.2 Inner Product Space

A vector space which defines a valid inner product is known as an Inner Product Space.

3.3 A few common Inner Product Spaces

Let us look at a few inner product spaces and their corresponding inner products.

3.3.1 Inner Product for the vector space Cn

Consider the vector space where the vectors are defined as a list of n complex numbers as follows:

z =
[
z1 z2 · · · zn

]⊤
and w =

[
w1 w2 · · · wn

]⊤
where ∀zi, wi ∈ C.

The inner product is defined as follows:

⟨z,w⟩ = z1w1 + z2w2 + z3w3 + · · ·+ znwn

We can easily verify that this function satisfies the above mentioned rules, hence it is a valid

inner product.

The standard dot product for n-dimensional Euclidean space over a real field is just a special

case of this exact inner product. (Remember that for real numbers r = r)

3.3.2 Inner Product for the vector space of continuous real-valued

functions

The set of continuous real-valued functions constitute an inner product space with the standard

inner product as follows:

⟨f ,g⟩ =
∫ 1

−1

f(x) · g(x) · dx

If the function f and/or g are not defined for the domain [−1, 1], then we just take the integration

for the largest possible common domain of definition.

Let us verify the validity of this function as the inner product:

1. Linearity:

⟨λf + g,h⟩ =
∫ 1

−1

(λf(x) + g(x)) · h(x) · dx

=

∫ 1

−1

λf(x) · h(x) + g(x) · h(x) · dx

=

∫ 1

−1

λf(x) · h(x) dx+

∫ 1

−1

g(x) · h(x) · dx

= λ

∫ 1

−1

f(x) · h(x) dx+

∫ 1

−1

g(x) · h(x) · dx

∴ ⟨λf + g,h⟩ = λ ⟨f ,h⟩+ ⟨g,h⟩
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2. Conjugate Symmetry:

⟨f ,g⟩ =
∫ 1

−1

f(x) · g(x) · dx

=

∫ 1

−1

g(x) · f(x) · dx

(∵ Integration of real-valued functions is real valued.)

=

∫ 1

−1

g(x) · f(x) · dx

∴ ⟨f ,g⟩ = ⟨g, f⟩

3. Non-negativity:

⟨f , f⟩ =
∫ 1

−1

f(x) · f(x) · dx

=

∫ 1

−1

(f(x))
2 · dx

(∵Area under the curve of a positive function is always positive

and is zero only when the curve is 0.)

∴ ⟨f , f⟩ ≥ 0 ∧ ⟨f , f⟩ = 0 ⇐⇒ f(x) = 0

Since, all three conditions are satisfied, the above defined function is a valid inner product on

the inner product space of real-valued continuous functions defined in the domain [−1, 1].

Q.1. Suppose that for a vector space over the set of continuous real-valued functions defined for

the domains [0,∞) , [0, 1] has an inner product candidate as follows:

⟨f ,g⟩ =
∫ 1

0

|f(x) · g(x)| · dx

Is it an inner product space?

The given function is an inner product if it satisfies the three properties as defined before.

1. Linearity:

⟨λf + g,h⟩ =
∫ 1

0

|(λf(x) + g(x)) · h(x)| · dx

=

∫ 1

0

|λ(f(x) · h(x)) + (g(x) · h(x))| · dx

λ ⟨f ,h⟩+ ⟨g,h⟩ = λ

∫ 1

0

|f(x) · h(x)| · dx+

∫ 1

0

|g(x) · h(x)| · dx

=

∫ 1

0

|λf(x) · h(x)|+ |g(x) · h(x)| · dx

We know that ∃x, y ∈ R; |x+ y| ≠ |x|+ |y|.

∴ ⟨λf + g,h⟩ is not always equal to λ ⟨f ,h⟩+ ⟨g,h⟩.

Thus, the given function is not an inner product. (Ans.)

Note:
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Whenever the problem statement does not specify a specific inner product, we make use of the

standard inner products defined in these sections.

Q.2. Find inner product of x and x2 on [−1, 1]

Let f(x) = x and g(x) = x2

⟨f ,g⟩ =
∫ 1

−1

f(x) · g(x) · dx

=

∫ 1

−1

x · x2 · dx

=

∫ 1

−1

x3 · dx

=
[
x4/4

]1
−1

= 1/4− 1/4 = 0

Thus the inner product of x and x2 is
〈
x,x2

〉
= 0 . (Ans.)

3.3.3 Inner Product for the vector space of Mm×n(C)

The set of m × n matrices over a complex field constitute an inner product space with the

standard inner product as follows:

⟨A,B⟩ = tr(BA∗)

where A∗ is the transposed conjugate of the matrix A.

Let us verify the validity of this function as the inner product:

1. Linearity:

⟨λA+B,C⟩ = tr(C · (λA+B)∗)

= tr(C(λA∗ +B∗)) = tr(C · λA∗ + CB∗)

= tr(λCA∗) + λ(CB∗) = λ tr(CA∗) + tr(CB∗)

∴ ⟨λA+B,C⟩ = λ ⟨A,C⟩+ ⟨B,C⟩

2. Conjugate Symmetry:

Conjugate of conjugate is the number itself
⟨A,B⟩ = tr(BA∗)

=
(
tr(BA∗)

)
= (tr((BA∗)∗))

= (tr((A∗)∗(B)∗))

= (tr(AB∗))

⟨A,B⟩ = ⟨B,A⟩
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3. Non-negativity:

Sum of squares of elements

⟨A,A⟩ = tr(AA∗)

= tr





∑n
i=1 |a1i|

2 · · · · · · ·
...

∑n
i=1 |a2i|

2 ...
...

. . .
...

· · · · · · ·
∑n

i=1 |ami|2


m×n


=
∑n

i=1

∑m
j=1 |aij |

2

∴ ⟨A,A⟩ ≥ 0 ∧ ⟨A,A⟩ = 0 ⇐⇒ A =


0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


m×n

Since, all three conditions are satisfied, the above defined function is a valid inner product on

the inner product space of complex-elemented matrices of order m× n.

3.3.4 Inner Product for the vector space of Pn[X]

The set of complex-valued polynomials of degree less than or equal to n constitute an inner

product space. Assuming the vectors to be of the form:

p(x) = p0 + p1x+ p2x
2 + · · · pnxn =

[
1 x x2 · · · xn

]
·



p0

p1

p2
...

pn


The standard inner product is defined as follows:

⟨p,q⟩ = p0q0 + p1q1 + p2q2 + · · ·+ pnqn =

n∑
i=0

piqi

Note:

Since real-valued polynomials are continuous real-valued functions as well, we can use the stan-

dard inner product for the vector space of continuous real valued functions as well.

Since we can represent the polynomials as column matrices, the vector space is just converted

to an (n+ 1)-dimensional Euclidean Space over a complex field with basis as
{
1, x, x2, · · · , xn

}
instead of {x1, x2, x3, · · · , xn+1}. The function ⟨p,q⟩ also has the same output as the inner

product for that vector space.

We know that the inner product for n-dimensional Euclidean Space is valid and hence, the inner

product candidate for the vector space of polynomials of degree less than or equal to n is also

valid.
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3.4 Norm (magnitude)

The norm of a vector is the generalisation of the concept of length of a vector. We define the

norm ∥u∥ of a vector u as follows:

∥u∥ =
√
⟨u,u⟩

Note that this reduces to the well-known identity |u⃗| =
√
u⃗ · u⃗ for Euclidean Space.

Q.3. Find the norm of f(x) = x on [−1, 1] for the vector space:

(i) Real-valued continuous functions

(ii) P2[x]

(i) Real-valued continuous functions

∥f∥ =
√
⟨f , f⟩

=

√√√√∫ 1

−1

f(x) · f(x) · dx =

√∫ 1

−1

x · x · dx

=

√∫ 1

−1

x2 dx

=
√

[x3/3]1−1 =
√

1/3− (−1)/3

=
√

2/3

(Ans.)

(ii) P2[x]

∥f∥ =
√
⟨f , f⟩

=
√
p0 · p0 + p1 · p1 + p2 · p2 =

√
0.0 + 1.1 + 0.0

=
√
1 = 1

(Ans.)

Q.4. If u =

(
− 3

5
,
4

5

)
, ∥u∥ =?

For vector space R2, inner product is defined as
√
u1 · v1 + u2 · v2 for vectors u⃗ = (u1, u2)

and v⃗ = (v1, v2). So,

∥u∥ =
√
u2
1 + u2

2

=

√√√√( − 3

5

)2

+

(
4

5

)2

=

√
9

25
+

16

25
=

√
��25

��25
=
√
1

∥u∥ = 1

(Ans.)
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3.4.1 Unit Vector

Let V be an inner product space. A vector u ∈ V is said to be a unit vector iff it’s norm is 1.

∀u ∈ V/{0V};
u

∥u∥
is a unit vector.

Proof. Consider the vector v =
u

∥u∥
. It is a unit vector iff ∥v∥ = 1.

∥v∥ =

∥∥∥∥∥ u

∥u∥

∥∥∥∥∥
=

〈
u

∥u∥
,

u

∥u∥

〉

=
1

∥u∥
·

1

∥u∥
· ⟨u,u⟩

=
1

∥u∥2
·
(√
⟨u,u⟩

)2
=

1

∥u∥2
· ∥u∥2

∴ ∥v∥ = 1

e.g. (1, 2, 3)
⊤ ∈ Rn

Unit((1, 2, 3)
⊤
) =

(
1
√
14
,

2
√
14
,

3
√
14

)⊤

3.5 Orthogonality

Two vectors u and v are said to be orthogonal iff ⟨u,v⟩ = 0F.

The concept of orthogonality denotes “perpendicularity” of some sort.

3.5.1 Orthogonal Set

A set of vectors is said to be an Orthogonal Set if all the distinct pairs of vectors in that set are

orthogonal to each other.

3.5.2 Orthogonal Basis

An orthogonal set with the minimum number of linearly independent elements required to span

the entire space is known as an Orthogonal Basis.

3.5.3 Orthonormal Basis

An orthogonal basis where all the elements are unit vectors is known as an Orthonormal Basis.
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3.5.4 Orthogonal Complement

The Orthogonal Complement of a subspace W of a vector space V is another subspace containing

elements of V that are orthogonal to all the elements of W simultaneously. It is referred to as

the perp or perpendicular complement informally and is denoted by W⊥.

Q.5. Is the set S = {(2, 1,−1), (0, 1, 1), (1,−1, 1)} an orthogonal basis? If yes, convert it to an

orthonormal basis.

Consider the vectors v1 = (2, 1,−1), v2 = (0, 1, 1), and v3 = (1,−1, 1).

⟨v1,v2⟩ = 2 · 0 + 1 · 1 + (−1) · 1 = 0 + 1− 1 = 0

⟨v2,v3⟩ = 0 · 1 + 1 · (−1) + 1 · 1 = 0− 1 + 1 = 0

⟨v3,v1⟩ = 1 · 2 + (−1) · 1 + 1 · (−1) = 2− 1− 1 = 0

S is an orthogonal set . Consider S′ to be the orthonormal version of S. (Ans.)

∥v1∥ =
√

22 + 12 + (−1)2 =
√
4 + 1 + 1 =

√
6

∥v2∥ =
√
02 + 12 + 12 =

√
0 + 1 + 1 =

√
2

∥v3∥ =
√
12 + (−1)2 + 12 =

√
1 + 1 + 1 =

√
3

∴ S′ =

{
1
√
6
(2, 1,−1),

1
√
2
(0, 1, 1),

1
√
3
(1,−1, 1)

}

∴ S′ =

{(
2
√
6
,
1
√
6
,
− 1
√
6

)
,

(
0,

1
√
2
,
1
√
2

)
,

(
1
√
3
,
− 1
√
3
,
1
√
3

)}

(Ans.)

Q.6. Is S1 = {sin(nx) |n = 1, 2, 3, . . . on [0, π]} an orthogonal set? Is it an orthonormal set?

Consider any two positive integers m and n which are not equal to each other. Calculating

the inner product for f(x) = sinmx and g(x) = sinnx.

⟨f ,g⟩ =
∫ π

0

f(x) · g(x) · dx =

∫ π

0

sin(mx) · sin(nx) · dx

=

∫ π

0

− 1

2
(cos((m+ n)x)− cos((m− n)x)) · dx

= −0.5

[ sin((m+ n)x)

(m+ n)
−

sin((m− n)x)

(m− n)

]π
0


= −0.5

(
sin((m+ n)π)− sin(0)

(m+ n)
−

sin((m− n)π)− sin(0)

(m− n)

)
= −0.5((0− 0)/(m+ n)− (0− 0)/(m− n))

∴ ⟨f ,g⟩ = 0

Since, the inner product of any two non-equal vectors is 0, the set S1 is an orthogonal set .

(Ans.)
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Consider the norm of a random vector f(x) = sin(mx).

∥f∥ =
∫ π

0

f(x) · g(x) · dx

=

∫ π

0

− 1

2
(cos((m+m)x)− cos((m−m)x)) · dx

= −0.5
(∫ π

0

cos(2mx)− 1 dx

)
= 0.5

(∫ π

0

1− cos(2mx) dx

)

= 0.5

(
x−

sin(2mx)

2m

)π

0

= 0.5

(
[π − 0]−

sin(2mπ)− sin(0)

2m

)
= 0.5

(
π −

0− 0

2m

)
= 0.5π

Since, the norm of every element in the S1 is 0.5π, the set S1 is not an orthonormal set .

(Ans.)

Q.7. Find two vectors with norm 1 which are orthogonal to (3,−4) in R2.

Consider an orthogonal vector to a⃗ = (3,−4) in R2 to be of the form b⃗ = (x, y). Now

since, we know that the two vectors are orthogonal,

a⃗ · b⃗ = 0

∴ 3x− 4y = 0

∴ y =
3

4
x

The above equation provides a line in R2 but we only require unit vectors so:∥∥∥⃗b∥∥∥ = 1

∴
√

x2 + y2 = 1

∴

√√√√
x2 +

(
3

4
x

)2

= 1

∴

√
25

16
x2 = 1

∴
25

16
x2 = 12

∴ x2 =
16

25

∴ x = ±

√
16

25
= ±

4

5

From the above equation y =
3

4
x, y = ±

3

5
. Thus the two unit vectors orthogonal to (3,−4)
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in R2 are

(
4

5
,
3

5

)
and

(
−
4

5
,−

3

5

)
. (Ans.)

3.6 Orthogonal Projections

The orthogonal projection of a vector u onto v is defined as follows:

projv (u) =
⟨u,v⟩
∥v∥2

· v

To understand this formula, let us take a look at 2-Dimensional Euclidean Space in Cartesian

(Rectangular) Coordinates. In the above diagram, we can see that the vector u⃗ casts a “shadow”

v⃗

u⃗

θ

|u⃗| sin θ

|u⃗| cos θ

Figure 3.1: Orthogonal Projection of u⃗ onto v⃗.

onto the vector v of length |u⃗| cos θ, i.e. the component of u⃗ in the direction of v⃗ has the length

|u⃗| cos θ where θ is the angle between the two vectors. This length is just called the scalar

projection of u⃗ onto v⃗.

If we need the vector in this direction, we already have v⃗ but it is not of the required length, so

we convert it into a unit vector by dividing it by it’s length and then multiply the length of the

“shadow” with this new unit vector to get our required vector.

The vector (say w⃗) perpendicular to v⃗ and going from the tip of the projection of u⃗ onto v⃗ to

the tip of u⃗ is the other vector which forms up u⃗. By the triangle law of addition of vectors, we

can say that:

w⃗ + projv⃗u⃗ = u⃗

∴w⃗ = u⃗− projv⃗u⃗

Thus, the orthogonal projection of u onto v is just the component of the vector u in the direction

of v i.e. projv (u) and the component of u orthogonal to v is u− projv (u)

Q.8. Find projv⃗u⃗ where u⃗ = (1, 0, 5) and v⃗ = (3, 1,−7):

∥v⃗∥ =
√
12 + 02 + 52 =

√
26

u⃗ · v⃗ = 3 · 1 + 1 · 0 + 5 · (−7) = 3− 35 = −32

projv⃗u⃗ =
⟨u⃗, v⃗⟩
∥v⃗∥2

· v⃗ =
u⃗ · v⃗
√
26

2 · v⃗ = −
32

26
· (1, 0, 5) =

(
−
16

13
, 0,−

80

13

)
(Ans.)
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Q.9. Find the orthogonal complement W⊥ of W =

{[
x

y

] ∣∣∣∣∣ 2x− y = 0; x, y ∈ R

}
and give it’s

basis.

Consider the elements of W⊥ to be of the form

[
u

v

]
. Since the elements of W⊥ are

orthogonal to W , we can say that:

[
u v

]
·

[
x

y

]
= 0

∴ ux+ vy = 0

∴ ux+ v(2x) = 0

∴ v = −0.5u

The elements of the orthogonal complement W⊥ are of the form

[
u

v

]
where v = −0.5u,

i.e. u ·

[
1

−0.5

]
.

Thus the orthogonal complement of W is W⊥ =

{[
u

v

] ∣∣∣∣∣ 2v + u = 0; u, v ∈ R

}
with the

basis

{[
1

−0.5

]}
. (Ans.)

3.6.1 Orthogonal Projection on a Subspace

Given a subspace W with an orthogonal basis {w1,w2,w3 · · · ,wn}, the orthogonal projection

of u onto W is:

projWu = projw1
(u) + projw2

(u) + projw3
(u) + · · ·+ projwn

(u) =

n∑
i=1

projwi
(u)

.

We can think of orthogonal projection onto a subspace as casting a “shadow” onto the subspace

when an overhead light source is present.

Q.10. Let W be the plane in R3 with equation x − y + 2z = 0. Find the orthogonal projection

of
[
3 −1 2

]⊤
onto W .

By trial and error, we know that
[
1 1 0

]⊤
lies inW . Another vector inW perpendicular

to this vector forms a basis of W .

Let the other vector be of the form
[
x y z

]⊤
but by the equation of the plane, we know

that x = y − 2z. The other vector becomes
[
y − 2z y z

]⊤
.
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Taking the dot product,

[
y − 2z y z

]11
0

 = 0

∴ (y − 2z)(1) + (y)(1) + (z)(0) = 0

∴ y − 2z + y = 0

∴ y = z

∴ The other vector becomes
[
−y y y

]⊤
= y

[
−1 1 1

]⊤

We know that one of the orthogonal basis of W is

{[
1 1 0

]⊤
,
[
−1 1 1

]}⊤

.

Finding the projection of
[
3 −1 2

]⊤
on
[
1 1 0

]⊤

proj[
1 1 0

]⊤

[
3 −1 2

]⊤
=

3(1)− 1(1) + 2(0)
√
12 + 12 + 02

2 ·
[
1 1 0

]⊤
=

2

2

[
1 1 0

]⊤
=
[
1 1 0

]⊤

Finding the projection of
[
3 −1 2

]⊤
on
[
−1 1 1

]⊤

proj[
−1 1 1

]⊤

[
3 −1 2

]⊤
=

3(−1)− 1(1) + 2(1)√
(−1)2 + 12 + 12

2 ·
[
−1 1 1

]⊤
= −

2

3

[
−1 1 1

]⊤
=

[
2

3
−
2

3
−
2

3

]⊤

Thus,

projW

[
3 −1 2

]⊤
= proj[

1 1 0
]⊤

[
3 −1 2

]⊤
+ proj[

−1 1 1
]⊤

[
3 −1 2

]⊤
=
[
1 1 0

]⊤
+

[
2

3
−
2

3
−
2

3

]⊤
=

[
5

3

1

3
−
2

3

]⊤

Thus the orthogonal projection of
[
3 −1 2

]
⊤ on the plane x−y+2z = 0 is

[
5

3

1

3
−
2

3

]⊤
.

(Ans.)
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3.7 Graham-Schmidt Orthogonalisation Process

The Graham-Schmidt orthogonalisation process is used to convert a set of linearly independent

vectors to an orthogonal set of vectors.

Let {x1, x2, x3, . . . , xk} be the basis of a subspace W of k dimensions. Then we consider an

orthogonal basis as the following set {v1, v2, v3, . . . , vk} where:

v1 = x1

v2 = x2 − projv1
x2

v3 = x3 − projv1x3 − projv2x3

...

vk = xk −
(
projv1xk + projv2xk + projv3xk + · · ·+ projvk−1

xk

)
︸ ︷︷ ︸

The vector component of xk perpendicular to the subspace formed by first k − 1 vectors

Note:

Even though the bold notation or arrow notation has not been used, the terms xi and vi still

represent vectors over here.

Q.11. Construct Orthonormal basis for the subspace W = span




1

−1
−1
1

 ,


2

1

0

1

 ,


2

2

1

2




Using the Graham-Schmidt Orthogonalisation Process:

v1 = x1 =
[
1 −1 −1 1

]⊤
Finding the value of v2,

⟨x2,v1⟩ = 2(1) + 1(−1) + 0(−1) + 1(1) = 2− 1 + 0 + 1 = 2

∥v1∥ =
√

12 + (−1)2 + (−1)2 + 12 =
√
1 + 1 + 1 + 1 = 2

v2 = x2 − projv1
(x2)

= x2 −
⟨x2,v1⟩
∥v1∥2

· v1

=
[
2 1 0 1

]⊤
−

2

22

[
1 −1 −1 1

]⊤
=
[
2 1 0 1

]⊤
−

1

2

[
1 −1 −1 1

]⊤
∴ v2 =

[
1.5 1.5 0.5 0.5

]⊤
Finding the value ofv3,

⟨x3,v1⟩ = 2(1) + 2(−1) + 1(−1) + 2(1) = 2− 2− 1 + 2 = 1

⟨x3,v2⟩ = 2(1.5) + 2(1.5) + 1(0.5) + 2(0.5) = 3 + 3 + 0.5 + 1 = 7.5
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∥v2∥ =
√
1.52 + 1.52 + 0.52 + 0.52 =

√
2.25 + 2.25 + 0.25 + 0.25 =

√
5

v3 = x3 − projv1
(x3)− projv2

(x3)

= x3 −
⟨x3,v1⟩
∥v1∥2

· v1 −
⟨x3,v2⟩
∥v2∥2

· v2

=
[
2 2 1 2

]⊤
−

1

22

[
1 −1 −1 1

]⊤
−

7.5
√
5
2

[
1.5 1.5 0.5 0.5

]⊤
=
[
2 2 1 2

]⊤
−

1

4

[
1 −1 −1 1

]⊤
−

3

2

[
1.5 1.5 0.5 0.5

]⊤
=
[
2 2 1 2

]⊤
−
[
0.25 −0.25 −0.25 0.25

]⊤
−
[
2.25 2.25 0.75 0.75

]⊤
∴ v3 =

[
−0.5 0 0.5 1

]⊤
∥v3∥ =

√
(−0.5)2 + 02 + 0.52 + 12 =

√
0.25 + 0 + 0.25 + 1 =

√
1.5

Thus, we have found an orthogonal set of vectors.

To convert it to orthonormal set, wi = vi/∥vi∥

w1 = v1/∥v1∥ = [1 −1 −1 1]⊤/2 =
[
0.5 −0.5 −0.5 0.5

]⊤
w2 = v2/∥v2∥ = [1.5 1.5 0.5 0.5]

⊤/
√
5 =

[
3/2

√
5 3/2

√
5 1/2

√
5 1/2

√
5

]⊤
w3 = v3/∥v3∥ = [−0.5 0 0.5 1]⊤/

√
1.5 =

[
− 1/

√
6 0 1/

√
6 2/

√
6

]⊤
3.7.1 QR-Factorisation

We use QR-Factorisation to find the linear dependence of a set of vectors. For QR-Factorisation,

we decompose the matrix A into Q ·R where:

• Q is an orthogonal Q⊤ = Q−1 or unitary Q∗ = Q−1.

• R is an Upper Triangular Square Matrix.

Q can be easily found out by applying Graham-Schmidt Process to the columns of A and R is

found out as follows.

Premultiplying by Q∗
∵ A = Q ·R

∴ Q∗ ·A = Q∗ ·Q ·R

∴ R = Q∗ ·A

Q.12. Find a QR−Factorisation of A =


1 2 2

−1 1 2

−1 0 1

1 1 2


For the given matrix A, the matrix Q can easily be found out by performing Graham-

Schmidt Orthogonalisation on the columns of A.

Q =


1 1.5 −0.5
−1 1.5 0

−1 0.5 0.5

1 0.5 1

 (Reason: Ye to kahi dekhe dekhe hue hai)
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R = Q∗ ·A

=

 1 −1 −1 1

1.5 1.5 0.5 0.5

−0.5 0 0.5 1

 ·


1 2 2

−1 1 2

−1 0 1

1 1 2


=

 1 + 1 + 1 + 1 2− 1 + 0 + 1 2− 2− 1 + 2

1.5− 1.5− 0.5− 0.5 3 + 1.5 + 0 + 0.5 3 + 3 + 0.5 + 1

−0.5− 0− 0.5 + 1 −1 + 0 + 0 + 1 −1 + 0 + 0.5 + 2



∴ R =

4 2 1

0 5 7.5

0 0 1.5


3.7.2 Best Approximation of a Vector

Let v be a vector and V be the vector space in which v resides. Let W be a subspace of V .

The best approximation of v onto W is defined as the vector in W whose distance from v is the

least from any other vector in W .

|v − Best Approximation| ≤ |v −w|

∀w ∈W

It has been found that the best approximation of a vector in a subspace is the projection of that

vector onto that subspace itself. i.e. Best Projection = projW (v).

Q.13. Find the best approximation of

32
5

 in the plane W = span

w⃗1 =

 1

2

−1

 , w⃗2 =

 5

2

−1




The vectors w⃗1 and w⃗2 are not orthogonal in nature because w⃗1 · w⃗2 = 5 · 1+ 2 · 2+ (−1) ·
(−1) = 10.

Applying the Graham-Schmidt Orthogonalisation Process,

Finding the value of v⃗1,

v⃗1 = w⃗1 =

 1

2

−1


Finding the value of v⃗2,

v⃗2 = w⃗2 −
w⃗2 · w⃗1

|w1|2
· v⃗1 = w⃗2 −

w⃗2 · v⃗1
|v1|2

· v⃗1 =

 5

2

−1

− 10

6

 1

2

−1

 =

 10/3

− 4/3

2/3



Now to find the best approximation, we find the orthogonal projection of u⃗ =

32
5

 on the

plane formed by v⃗1 and v⃗2.
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projv⃗1 u⃗ =
3(1) + 2(2) + 5(−1)

6

 1

2

−1

 =

 1/3

2/3

− 1/3



projv⃗2 u⃗ =
3(10/3) + 2(− 4/3) + 5(2/3)

40/3

 10/3

− 4/3

2/3

 =

 8/3

− 16/15

8/15



projW u⃗ = projv⃗1 u⃗+ projv⃗2 u⃗ =

 1/3

2/3

− 1/3

+

 8/3

− 16/15

8/15

 =

 9/3

− 6/15

3/15

 =

 3

−0.4
0.2



Thus, the projection of

32
5

 on the subspace W is

 3

−0.4
0.2

 . (Ans.)

3.7.3 Least Square Method

In many cases, there is a direct linear relation between a measured input value and the measured

output value of a system. While devising such a linear relation, we must know the slope and

y-intercept of the line we want to graph. We can never find the exact linear relation as there

may be many errors while measuring or due to the inherent variability of data, what we CAN

do however, is get as close as possible to the line. This is where the Least Square Method comes

in.

x

y

(x1, y1)
(x2, y2)

(x3, y3)

Figure 3.2: Least Square Method: y = a+ bx

The least square method basically seeks to minimise the value of the sum of squares of the

absolute errors i.e. minimise

k∑
i=1

(yi − (a+ bxi))
2 where k is the number of samples taken.
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k∑
i=1

(yi − (a+ bxi))
2 = (y1 − (a+ bx1))

2 + (y2 − (a+ bx2))
2 + · · ·+ (yk − (a+ bxk))

2

=

∥∥∥∥∥∥∥∥∥∥


y1

y2
...

yk

−

a+ bx1

a+ bx2

...

a+ bxk


∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥


y1

y2
...

yk


︸ ︷︷ ︸

y

−


1 x1

1 x2

...
...

1 xk


︸ ︷︷ ︸

A

·

[
a

b

]
︸︷︷︸
u

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

= ∥y −Au∥2

So we must minimise the value of ∥Au− y∥2 instead. We can consider that Au is just the vector

subspace formed by the transforming matrix A for all possible values of u and for a particular

value, Au is the best approximation of y.

∵ Au = projIm(A)y

∴ y −Au ⊥ aj ∀aj ∈ Im(A)

∴ ⟨y −Au,aj⟩ = 0F

∴ ⟨aj,y −Au⟩ = 0F In this case, F = C

∴ aj
∗ (y −Au) = 0C = 0 Since ⟨u,v⟩ = u⊤ · v; ∀u,v ∈ Ck

∴ A∗ (y −Au) = 0Ck

∴ A∗y −A∗Au = 0Ck

∴ A∗y = A∗Au Pre-multiplying by (A∗A)
−1

∴ u = (A∗A)
−1

A∗y

Thus, the value of u =

[
a

b

]
is given by (A∗A)

−1
A∗y

Q.14. Find the Best Fitted Line using Least Square Method from the set S of samples given as

follows: S = {(−2, 4), (−1, 2), (0, 1), (2, 1), (3, 1)}

Applying the Least Square Method to find the best fitted line, the line has the equation

y = a+ bx, where a and b are given as follows:[
a

b

]
= u = (A∗A)−1A∗y

where,
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• A =

[
1 1 · · · 1

x1 x2 · · · x5

]⊤
=

[
1 1 1 1 1

−2 −1 0 2 3

]⊤

• y =
[
y1 y2 · · · y5

]
=
[
4 2 1 1 1

]⊤
Therefore, A∗ =

[
1 1 · · · 1

x1 x2 · · · x5

]
.

Therefore, A∗A =

[
1 1 1 1 1

−2 −1 0 2 3

]
·


1 −2
1 −1
1 0

1 2

1 3

 =

[
5 2

2 18

]
.

|A∗A| = 5× 18− 2× 2 = 90− 4 = 86

Therefore, (A∗A)−1 =
1

|A∗A|
· adj(A∗A) =

1

86

[
18 −2
−2 5

]

Therefore, A∗y =

[
1 1 1 1 1

−2 −1 0 2 3

]
·


4

2

1

1

1

 =

[
9

−5

]

Thus, u = (A∗A)−1A∗y =
1

86

[
18 −2
−2 5

][
9

−5

]
=

1

86

[
172

−43

]
=

[
2

−0.5

]
Hence, the required line is y = 2− 0.5x . (Ans.)
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Chapter 4
Complex Analysis

4.1 Foundations

4.1.1 Imaginary Unit

The imaginary unit is denoted by i. It is defined as the number with the property that i2 := −1 .

4.1.2 Complex Numbers

The set of complex numbers C is defined as follows,

C := {z | z := x+ iy : x, y ∈ R}

z = x + iy is called the Cartesian (or rectangular) form of the complex number z. x is called

the real part of z (denoted as R(z) or Re(z)), while y is known as its imaginary part (denoted

as I(z) or Im(z)).

If I(z) = 0, then z = x+ 0i = x =⇒ z ∈ R. Therefore, R ⊂ C.

4.1.3 Euler’s Formula

Euler’s formula is given by,

eiθ = cos θ + i sin θ (4.1)

Therefore, sometimes eiθ or cos θ + i sin θ may be denoted as cis θ.

Consider a complex number z := x+ iy.

Multiply and divide by
√

x2 + y2

z = x+ iy

=
√
x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)

Let r :=
√
x2 + y2 and θ be the angle such that cos θ := x/r and sin θ := y/r.

From eq. (4.1)
∴ z = r(cos θ + i sin θ)

z = reiθ
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z = reiθ is called the Euler (or polar) form of the complex number z. r is called the modulus of

z (denoted as |z|), while θ is known as its argument (denoted as arg(z)).

Euler’s Identity

Euler’s identity is a famous identity that brings the five most important mathematical constants

together in one equation.

eiπ + 1 = 0

Coordinate Conversion

x+ iy = hypot(x, y)ei·atan2(y,x) (4.2)

reiθ = r cos θ + i · r sin θ (4.3)

where hypot(x, y) :=
√
x2 + y2 and atan2(y, x) is a special piece-wise function that returns the

principal argument Arg(x+ iy).

4.1.4 ArGand Plane

While real numbers require only a number line, complex numbers shall be represented using a

complex plane (also called the Argand plane), since there are two degrees of freedom.

R

I

1

i
r

z = x+ iy

θ

Figure 4.1: The Argand plane

The modulus of z, r := |z|, describes the distance of z from 0. The argument of z, θ := arg(z),

describes the angle made by z with the positive real axis.

Since coterminal angles can imply multiple values for arg(z), we confine the range of the principal

argument of z in the interval (−π, π]. The principal argument of a complex number z is denoted

as Arg(z).

When arg(z) = nπ, n ∈ Z, sin θ = 0 =⇒ I(z) = 0 =⇒ z ∈ R.
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4.1.5 Complex Conjugate

The complex conjugate z of a complex number z is defined as the reflection of z about the real

axis.

Re

Im

z

z

θ
θ

Figure 4.2: Complex conjugate

z = x+ iy ⇐⇒ z = x− iy (4.4)

z = reiθ ⇐⇒ z = re−iθ (4.5)

Properties of the conjugate

1. z = z

2. z = z ⇐⇒ I(z) = 0⇐⇒ z ∈ R

3. z1 + z2 = z1 + z2

4. z1z2 = z1 · z2

5. zz = |z|2

6. R(z) =
z + z

2

7. I(z) =
z − z

2i

4.1.6 Equality of Complex Numbers

Rectangular Coordinates

Two complex numbers z1 := x1 + iy1 and z2 := x2 + iy2 are said to be equal iff x1 = x2 and

y1 = y2.

Polar Coordinates

Two complex numbers z1 := r1e
iθ1 and z2 := r2e

iθ2 are said to be equal iff r1 = r2 and

∃n ∈ Z : θ1 = θ2 + 2nπ.
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4.1.7 Powers of Complex Numbers

Consider z := reiθ. Exponentiating z to an index n can be interpreted as rotating z about 0 by

the angle ‘θ’ (n− 1) times and scaling this rotated vector to a length of rn.

Q.1 If z =
√
3 + i, find z8.

By eq. (4.2),

|z| := hypot(
√
3, 1) =

√(√
3
)2

+ 12 = 2

Arg(z) := atan2 (1,
√
3) = arctan

(
1√
3

)
=

π

6

Exponentiate to 8th power

Apply Euler’s formula

=⇒ z = 2ei
π/6

∴ z8 =
(
2ei

π/6
)8

= 28 cis
(
i
π

6
· 8
)

= 256ei
4π/3

= 256

(
−1

2
+ i

(
−
√
3

2

))
=⇒ z8 = −128− 128

√
3i

(Ans.)

4.1.8 Roots of Complex Numbers

Consider z := reiθ to be an nth root of the complex number w := Reiϕ.

=⇒ zn := Reiϕ

∴
(
reiθ

)n
= Reiϕ

∴ rneinθ = Reiϕ

From §4.1.6, we can deduce that:

rn = R =⇒ r = R
1/n (4.6)

∃m ∈ Z : nθ = ϕ+ 2mπ =⇒ θ =
ϕ

n
+

2mπ

n
, m ∈ J0, n− 1K (4.7)

By the fundamental theorem of algebra, the polynomial equation zn = w should have n principal

solutions. Therefore, we constrain m to the interval {0, 1, . . . , n− 1} := J0, n− 1K.

Q.2. Find all the fifth roots of unity.

Consider z := reiθ ∈ C s.t. z5 := 1.

We can express 1 in polar form as e2iπ. From eq. (4.6),

r5 = 1 =⇒ r = 1
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From eq. (4.7),

θ =
2π

5
+

2mπ

5
=⇒ θ =

2(m+ 1)π

5
, m ∈ J0, 4K

Therefore,

z ∈
{
ei

2π/5, ei
4π/5, ei

6π/5, ei
8π/5, 1

}
(Ans.)

Q.3. Find all values of (−8i)1/3.

−8i = 0− 8i

= 8(0− i)

−8i = 8e−iπ/2

Consider z := reiθ ∈ C s.t. z3 := −8i.

From eq. (4.6),

r3 = 8 =⇒ r = 2

From eq. (4.7),

θ = −
π/2

3
+

2mπ

3
=⇒ θ =

(4m− 1)π

6
, m ∈ J0, 2K

Therefore,

z ∈
{
2e−iπ/6, 2ei

3π/6, 2ei
7π/6
}

∈
{√

3− i, 2i,−
√
3− i

}
(Ans.)

Q.4. Evaluate
(
−8− 8

√
3i
)1/4

.

Consider z := reiθ ∈ C s.t. z4 = −8− 8
√
3i

∵ z4 = −8− 8
√
3i

∴ r4ei(4θ) = 8(−1−
√
3i)

= 16

(
−
1

2
−
√
3

2
i

)
∴ r4ei(4θ) = 16ei(

− 2π/3)

From eq. (4.6),

r4 = 16 =⇒ r = 2
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From eq. (4.7),

θ =
− 2π/3

4
+

2mπ

4
=⇒ θ =

(3m− 1)π

6
,m ∈ J0, 3K

Therefore,

z ∈
{
2e−iπ/6, 2ei

π/3, 2ei
5π/6, 2ei

4π/3
}

∈
{√

3− i, 1 +
√
3i,−

√
3 + i,−1−

√
3i
}

(Ans.)

Q.5. Find the cube roots of 3 + 4i.

Consider z := reiθ s.t. z3 = 3 + 4i

We can represent the complex number (3 + 4i) as
(
5ei arctan (4/3)

)
.

From eq. (4.6),

r3 = 5 =⇒ r =
3
√
5

From eq. (4.7),

θ =
arctan(4/3) + 2mπ

3
,m ∈ J0, 2K

Therefore,

z ∈
{

3
√
5e

i
3 arctan

(
4
3

)
,

3
√
5e

i
3

(
arctan

(
4
3

)
+2π

)
,

3
√
5e

i
3

(
arctan

(
4
3

)
+4π

)}

(Ans.)

4.2 Complex Functions

Let set S ⊆ C.

A function f defined on set S is a rule that assigns each element of z ∈ S to a complex number

w ∈ S.

w := f(z)

Dependent variable Independent variable

By convention, we denote z := x + iy, whereas we denote w := u + iv. Therefore, complex

functions can be visualized as mappings from an xy space to a uv space.
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x

y

z

u

v

f(z)

f

Figure 4.3: A complex function f mapping xy space to uv space

For example, consider the function f(z) := z2 + iz. For z := x+ iy,

w := f(z)

= z2 + iz

= (x+ iy)
2
+ i(x+ iy)

= x2 − y2 + 2xyi+ ix− y

=⇒ u+ iv = (x2 − y2 − y) + i(2xy + x)

Therefore, u = x2 − y2 − y and v = 2xy+ x, which means u and v are themselves also functions

of x and y.

Q.6. If f(z) := z2 + 3z, then compute f(1 + 3i).

f(1 + 3i) := (1 + 3i)
2
+ 3(1 + 3i)

= 12 − 32 + (2 · 1 · 3)i+ 3 + 9i

∴ f(1 + 3i) = −5 + 15i

(Ans.)

4.2.1 Limits

The following is the definition of a limit for real-valued functions:

lim
x→x0

f(x) = L means ∀ε > 0 ∃δ > 0 : |f(x)− L| < ε⇐= |x− x0| < δ.

The limit is said to exist and equal to L when lim
x→x0

+
f(x) = lim

x→x0
−
f(x) = L as shown in fig. 4.4.

x0 − δ x0 x0 + δ L− ε L L+ ε

f

Figure 4.4: Definition of a limit

Complex Definition

lim
z→z0

f(z) = l means ∀ε > 0 ∃δ > 0 : |f(z)− l| < ε⇐= |z − z0| < δ1. (4.8)

1|z − z0| < δ represents a disc (excluding circumference) in the complex plane centered at z0 with radius δ.
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x

y

z0

δ

u

v

l

ε

f

Figure 4.5: Complex definition of a limit

Unlike real numbers, a complex number can be approached from any direction, as seen in fig. 4.5.

Therefore, the complex limit exists and is equal to l only when the limit from every direction is

equal and equal to l.

Q.7. Let f(z) :=
z

z
. Find lim

z→0
f(z).

Let z := x+ iy =⇒ z := x− iy.

∴ f(z) =
x+ iy

x− iy

=⇒ lim
z→0

z

z
= lim

(x,y)→(0,0)

x+ iy

x− iy

Let us assume a line of approach y := mx to the point (0, 0) where m is the slope of the

line (∵ y → 0 =⇒ mx→ 0 =⇒ x→ 0).

∴ lim
z→0

z

z
= lim

x→0

x+ imx

x− imx

= lim
x→0

�x(1 + im)

�x(1− im)

= lim
x→0

1 + im

1− im

=
1 + im

1− im

For different directions of approach, the value of m changes so the value of limit changes

as well. The limit does not exist . (Ans.)

Q.8. f(z) := |z|2. Find lim
z→0

f(z).

Let z := x+ iy =⇒ |z| =
√

x2 + y2

∴ lim
z→0
|z|2 = lim

(x,y)→(0,0)
(x2 + y2)

Let us assume a line of approach y := mx to the point (0, 0) where m is the slope of the

line (∵ y → 0 =⇒ mx→ 0 =⇒ x→ 0).
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Applying the limit

lim
z→0
|z|2 = lim

x→0
(x2 +m2x2)

= lim
x→0

x2(1 +m2)

= 0 · (1 +m2)

=⇒ lim
z→0
|z|2 = 0

(Ans.)

Q.9. Suppose f(z) :=
i · z
2

. Show that lim
z→1

f(z) =
i

2
.

Proof. Let us assume that the limit of the given function as z → 1 is equal to
i

2
. According

to eq. (4.8):

∀ε > 0 ∃δ > 0 :

∣∣∣∣ i · z2 − i

2

∣∣∣∣ < ε ⇐= |z − 1| < δ

Let z := x+ iy

z = x− iy

∣∣∣∣∣ i2(z − 1)

∣∣∣∣∣ =
∣∣∣∣i(x− 1

2
− i

y

2

)∣∣∣∣
=

∣∣∣∣y2 + i
x− 1

2

∣∣∣∣
=

1

2
·
√

y2 + (x− 1)2

∴ ε >
1

2
·
√

y2 + (x− 1)2

∴ 2ε =
√
y2 + (x− 1)2 + c1 (c1 > 0)

|z − 1| = |(x− 1) + iy|

=
√
(x− 1)2 + y2

∴ δ >
√
(x− 1)2 + y2

∴ δ =
√
(x− 1)2 + y2 + c2 (c2 > 0)

∴ δ = 2ε− c1 + c2

Since there exists a valid relation between ε and δ,

The limit of the given function as z approaches 1 is i/2.

4.2.2 Continuity

A complex-valued function f is said to be continuous at z0 iff the limit of the function at z0

exists and equals the value of the function at z0. This can be defined as follows:

lim
z→z0

f(z) = f(z0) means ∀ε > 0 ∃δ > 0 : |f(z)− f(z0)| < ε⇐= |z − z0| < δ.

Page 57 of 98



Q.10. Consider a function f as follows,

f(z) :=


R(z2)

|z|2
, z ̸= 0

0, otherwise

Is f continuous?

Consider z := x+ iy.

When we expand the function for z ̸= 0, we get f(z) =
x2 − y2

x2 + y2
. Let us assume a line of

approach from a random direction specified by the equation y = mx. Thus the function f

is

lim
z→0

f(z) = lim
x→0

x2 −m2x2

x2 +m2x2
= lim

x→0

��x2(1−m2)

��x2(1 +m2)
=

1−m2

1 +m2

After applying the limit, the final limit depends on the direction of approach (m). Hence

the limit does not exist, and the function is not continuous at z = 0. (Ans.)

4.2.3 Differentiability

The ratio of the change in the value of the function f(z) to the change in the value of the complex

variable z is known as its derivative. It is defined as follows,

f ′(z) := lim
∆z→0

f(z +∆z)− f(z)

∆z
(4.9)

Iff this limit exists, f is differentiable

An alternative definition is given by,

f ′(z) := lim
z→z0

f(z)− f(z0)

z − z0
(4.10)

Q.11. Is f(z) := |z|2 differentiable?

By eq. (4.9),

∆z → 0 ⇐⇒ ∆z → 0

f ′(z) := lim
∆z→0

f(z +∆z)− f(z)

∆z

:= lim
∆z→0

|z +∆z|2 − |z|2

∆z

= lim
∆z→0

(z +∆z)(z +∆z)− zz

∆z

= lim
∆z→0

(z +∆z)(z +∆z)− zz

∆z

= lim
∆z→0

��zz + z∆z + z∆z +∆z∆z −��zz

∆z

= lim
∆z→0

z
∆z

∆z
+ z +∆z

= z + z lim
∆z→0

∆z

∆z

Assuming that ∆z approaches 0 from the x-axis, ∆z = ∆z, the given limit equals (z+ z).

Assuming that ∆z approaches 0 from the y-axis, ∆z = −∆z, the given limit becomes

equals (z − z).
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Since, the value of the derivative is different for different directions of approach, the func-

tion is not differentiable at every point. (Ans.)

Necessary condition for differentiability

Assume z := x + iy is a complex number and f is a complex-valued function s.t. f(x, y) :=

u(x, y) + i · v(x, y). If f is differentiable at z = z0 then it means that the below limit exists.

f ′(z) := lim
∆z→0

f(z0 +∆z)− f(z0)

∆z
= lim

(∆x,∆y)→(0,0)

f(x0 +∆x, y0 +∆y)− f(x0, y0)

∆x+ i∆y

Assuming that ∆z → 0 from the x-axis i.e. ∆y = 0, the above limit becomes:

f ′(z0) = lim
∆x→0

f(x0 +∆x, y0)− f(x0, y0)

∆x

=
∂

∂x
f(x0, y0) =

∂

∂x
u(x0, y0) + i

∂

∂x
v(x0, y0)

= ux + ivx

Assuming that ∆z → 0 from the y-axis i.e. ∆x = 0, the above limit becomes:

f ′(z0) = lim
∆y→0

f(x0, y0 +∆y)− f(x0, y0)

i∆y

=
i

i2
· ∂

∂y
f(x0, y0) = −i

(
∂

∂y
u(x0, y0) + i

∂

∂y
v(x0, y0)

)
= vy − iuy

We know that for a complex limit to exist, it must be equal for all directions of approach, so

from the above two equations we can say,

ux = vy and vx = −uy (4.11)

The above equations are known as the Cauchy-Riemann (CR) equations and they hold true

for every complex differentiable function.

Sufficient conditions for differentiability

For a complex function f to be complex differentiable at z = z0, it should follow the following

two conditions:

i) The function satisfies the CR equations.

ii) The partial derivatives ux, vx, uy and vy are continuous in the neighborhood of z0.

4.2.4 Holomorphic Functions

A complex function is said to be holomorphic in an open subset U of C if it is complex differen-

tiable for every point in U .
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4.2.5 Analytic Functions

A complex function is said to be analytic at a given point z0 of its domain if it can be locally

represented as a convergent power series around z0. That is ∃R > 0 such that f(z) can be

written as
∑∞

n=0 an(z − z0)
n, ∀z|z − z0| < R

If a complex function is holomorphic in a given region of its domain then it is analytic for every

point in its domain.

Q.12. Check the analyticity of the function f(z) := |z|2.

Given that f(z) := |z|2.

Therefore, f(z) = f(x, y) = x2 + y2 =⇒ u(x, y) = x2 + y2 ∧ v(x, y) = 0.

Since ux = 2x and vy = 0, CR equations are not satisfied. Therefore, the function is not

holomorphic and therefore not analytic . (Ans.)

Q.13. Show that if f(z) and f(z) are both analytic then f is a constant function.

Proof. Let f(z) := u + iv ⇐⇒ f(z) = u − iv. If f(z) is analytic then it means that the

CR equations are satisfied: ux = vy and vx = −uy.

Similarly if f(z) is analytic then we get ux = (−v)y =⇒ ux = −vy and (−v)x = −uy =⇒
vx = uy.

From the above two results we know that ux = −ux and vx = −vx. This can occur iff

ux = 0 ∧ vx = 0.

∴ f ′(z) := ux + ivx = 0 =⇒ f(z) = c, where c is a constant.

Hence, if a complex function and its conjugate are both analytic then we can say that the

function is constant.

4.2.6 Entire Functions

A complex function is said to be entire if it is holomorphic for the entire complex plane C.

Q.14. Check whether f(z) := (z2 − 2)e−xe−iy is an entire function or not.

f(z) := (z2 − 2)e−xe−iy

= e−x(x2 − y2 − 2 + 2ixy)(cos y − i sin y)

= e−x((x2 − y2 − 2) cos y + 2xy sin y) + i e−x(2xy cos y − (x2 − y2 − 2) sin y)

Now comparing with the CR equations we can say that:

u(x, y) = e−x((x2 − y2 − 2) cos y + 2xy sin y)

∴ ux = (2x cos y + 2y sin y)e−x − ((x2 − y2 − 2) cos y + 2xy sin y)e−x

= ((y2 + 2x− x2 + 2) cos y + (2y − 2xy) sin y)e−x

∴ uy = (−2y cos y − (x2 − y2 − 2) sin y + 2x sin y + 2xy cos y)e−x

= ((y2 + 2x− x2 + 2) sin y − (2y − 2xy) cos y)e−x
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and

v(x, y) = e−x((2xy) cos y − (x2 − y2 − 2) sin y)

∴ vx = (2y cos y − 2x sin y)e−x − (2xy cos y − (x2 − y2 − 2) sin y)e−x

= ((2y − 2xy) cos y + (x2 − 2x− y2 − 2) sin y)e−x

∴ vy = (2x cos y − 2xy sin y − −2y sin y − (x2 − y2 − 2) cos y)e−x

= ((y2 + 2x− x2 + 2) cos y + (2y − 2xy) sin y)e−x

As we can clearly see, ux = vy, vx = −uy and the partial derivatives ux, vx, uy and vy are

continuous over the entire complex plane2. Therefore, the function is holomorphic over

the entire complex plane and is entire . (Ans.)

4.2.7 Harmonic Functions

A real valued function in two variables say x and y is said to be harmonic if it’s first and second

order derivatives exist, these derivatives are continuous and they satisfy the Laplace equation:

∂2u

∂x2
+

∂2u

∂y2
= 0 (4.12)

Harmonic Conjugates

If two real valued harmonic functions u and v exist such that the function u+ iv is analytic in

nature, then v is known as the harmonic conjugate of u.

Q.15. Find the analytic function f(z) := u + iv whose real part is defined as follows: u =

sinx · cosh y.

Since f is analytic, we can say that it satisfies the CR equations, i.e. ux = vy = cosx·cosh y
and uy = −vx = sinx · sinh y.

∂v

∂y
= cosx · cosh y ∂v

∂x
= − sinx · sinh y

∴
∫

dv =

∫
cosx · cosh y dy ∴

∫
dv =

∫
− sinx · sinh y dx

∴ v = cosx

∫
cosh y dy ∴ v = sinh y

∫
− sinxdx

∴ v = cosx · sinh y + c1(x) ∴ v = sinh y · cosx+ c2(y)

Notice that the constants of integration are actually functions of x and y respectively. This

is because while taking a partial derivative, the other variables are considered as constants

and consequently the partial derivatives of their functions evaluate to zero.

Now on comparing the two values of v which we have evaluated, we get the equation

c1(x) = c2(y). This can only happen iff c1(x) = c2(y) = k where k ∈ C.

Therefore, the entire function f is

f(x, y) := sinx · cosh y + i(cosx · sinh y + k) where k ∈ C

2because they are compositions of polynomial, exponential and trigonometric sine and cosine functions.

Page 61 of 98



(Ans.)

Alternatively,

ux = cosx · cosh y and uy = sinx · sinh y.

From CR equations, we can deduce that vx = −uy = − sinx · sinh y and vy = ux =

cosx · cosh y.

Now,

vy :=
∂v

∂y

=⇒ ∂v

∂y
= cosx · cosh y

∴
∫

dv =

∫
cosx · cosh y dy

∴ v = cosx · sinh y + ϕ(x), where ϕ(x) is a function independent of y.

Differentiating v with respect to x,

vx =
∂

∂x
(cosx · sinh y + ϕ(x))

∴ vx = − sinx · sinh y + ϕ′(x)

However, we know from CR equations that vx = − sinx · sinh y =⇒ ϕ′(x) = 0 =⇒
ϕ(x) = k , where k ∈ C is a constant3.

Therefore, the entire function f is

f(x, y) := sinx · cosh y + i(cosx · sinh y + k) where k ∈ C

(Ans.)

The above procedure can be summarised with the following algorithm:

Algorithm 1: Obtaining analytic function when real part is known

Data: Real part u is given.
1 Find ux and uy.
2 Using CR equations, obtain vx and vy.
3 Integrate vy or vx with respect to y or x respectively.
4 Differentiate v obtained in step 3 with respect to x or y depending on the variable taken

in step 3.
5 Compare vx or vy depending on the variable chosen in step 3.
Result: f(z) := u+ iv.

Q.16. If v := 4x3y − 4xy3, then find the analytic function f(z) := u+ iv.

Given v := 4x3y − 4xy3, therefore vx = 12x2y − 4y3 and vy = 4x3 − 12xy2.

3ϕ(x) was independent of y, therefore ϕ′(x) = 0 iff it is a constant.
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Algorithm 2: Obtaining analytic function when imaginary part is known

Data: Imaginary part v is given.
1 Find vx and vy.
2 Using CR equations, obtain ux and uy.
3 Integrate uy or ux with respect to y or x respectively.
4 Differentiate u obtained in step 3 with respect to x or y depending on the variable taken

in step 3.
5 Compare ux or uy depending on the variable chosen in step 3.
Result: f(z) := u+ iv.

From the CR equations, we can say that ux = vy and vx = −uy.

Integrating both sides

∂u

∂x
= 4x3 − 12xy2

∴ du = (4x3 − 12xy2) dx

∴
∫

du =

∫
4x3 − 12xy2 dx

∴ u = x4 −
12

2
x2y2 + ϕ(y) = x4 − 6x2y2 + ϕ(y)

Now consider the partial derivative of u with respect to y.

∂u

∂y
=

∂

∂y

(
x4 − 6x2y2 + ϕ(y)

)
uy = −12x2y + ϕ′(y)

uy = −(12x2y2 − ϕ′(y))

We know from the CR equations that vx = −uy. Substituting the values of vx and uy we

find that ϕ′(y) = 4y3. Therefore ϕ(y) =
∫
4y3 dy = y4 + c where c ∈ C.

Therefore the function f is equal to (x4 − 6x2y2 + y4) + i(4x3y − 4xy3) + c or

f(z) = z4 + c where c ∈ C

(Ans.)

4.2.8 Milne-Thomson’s Method

It is another method provided by the scientist Milne-Thomson to directly solve for an analytic

function f(z) when only its real (or imaginary) part is known.

Algorithm 3: Finding analytic f(z) when u(x, y) or v(x, y) is given

Data: Real (u) or imaginary (v) part is given.
1 f ′(z) := ux − iuy or f ′(z) := vy + ivx from CR.
2 In the partial derivatives, substitute x = z and y = 04.
3 Integrate f ′(z) now obtained with respect to z to get f(z).
Result: f(z) := u+ iv

4The reason being that x =
z + z

2
and y =

z − z

2
, which is true even when x and y /∈ R meaning that z and

z are independent and can be equated to each other.
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Q.17. If v := 4x3y−4xy3, then find the analytic function f(z) := u+ iv using Milne-Thompson’s

method.

Given v := 4x3y − 4xy3, therefore vx = 12x2y − 4y3 and vy = 4x3 − 12xy2.

We know from the CR equations that ux = vy and vx = −uy. Thus f
′(x) = vy + ivx.

Substituting x = z and y = 0 in vx and vy, f
′(z) = (4z3 − 0) + i(0− 0) = 4z3.

Upon integration w.r.t. z, we get f(z) =
∫
4z3 dz = z4 + c where c ∈ C . (Ans.)

Finding the entire function when sum or difference of the real and imaginary parts

is given

Consider a complex number w := u + iv which is the result of a complex analytic function f .

i.e. f(z) = u+ iv.

Now consider the function Φ(z) := (1 + i)f(z). This function is also complex differentiable for

all points in a given domain of f meaning it is holomorphic for the same region as f and hence

is analytic as well. Now Φ(z) := (1 + i)f(z) = (u− v) + i(u+ v).

Since, we know the sum(or difference) of f , it means we know the real(or imaginary) part of a

complex analytic function and hence we can apply Milne-Thomson’s method to find Φ. Then

we can just divide by (1 + i) to get the original function f .

Q.18. Find the analytic function f(z) = u+ iv when u+ v =
2 sin 2x

ey + e−y − 2 cos 2x
.

We know that,

(1 + i)f(z) = (u− v) + i(u+ v)

:= U + iV

Thus, V := u+ v =
2 sin 2x

ey + e−y − 2 cos 2x
.

Differentiating,

∴ Vx =

(
e2y + e−2y − 2 cos 2x

)
4 cos 2x− 2 sin 2x(4 sin 2x)

(e2y + e−2y − 2 cos 2x)
2

=

(
e2y + e−2y

)
4 cos 2x− 8 cos2 2x− 8 sin2 2x

(e2y + e−2y − 2 cos 2x)
2

∴ Vx =

(
e2y + e−2y

)
4 cos 2x− 8

(e2y + e−2y − 2 cos 2x)
2

∴ Vy = − 2 sin 2x(2e2y − 2e−2y)

(e2y + e−2y − 2 cos 2x)
2
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By Milne-Thompson’s method,

(1 + i)f ′(z) = Vy(z, 0) + iVx(z, 0)

= − 2 sin 2z(2− 2)

(1 + 1− 2 cos 2z)
2 + i

(
(1 + 1)4cos2z − 8

(1 + 1− 2 cos 2z)
2

)

= i

(
8(cos 2z − 1)

(2− 2 cos 2z)
2

)

= −8i

(
(((((1− cos 2z

4(1− cos 2z)�
2

)

= − 2i

1− cos 2z

= − i

sin2 z

∴ (1 + i)f ′(z) = −i · csc2 z

=⇒ (1 + i)f(z) = −
∫

i · csc2 z dz

∴ (1 + i)f(z) = i cot z + c, where c is the arbitrary constant of integration.

∴ f(z) =
i cot z

1 + i
+

c

1 + i

Let k :=
c

1 + i
be another constant.

∴ f(z) =

(
1 + i

2

)
cot z + k

(Ans.)

4.2.9 Bijectivity of Complex Functions

Consider a complex function f : A → B. The function f is said to be bijective if it follows the

two following conditions:

• Injectivity (one-one): ∀z1, z2 ∈ A f(z1) = f(z2) =⇒ z1 = z2 i.e. each image has one

and only one pre-image.

• Surjectivity (onto): ∀w ∈ B ∃z ∈ A : w = f(z) i.e. Range of f = B.

Q.19. Restrict the domain and range such that the function exp(z), z ∈ C is a bijective.

Assume that the function f : C→ C is defined as: f(z) := exp(z).

z := x+ iy =⇒ f(z) = exp(x+ iy)

= exp(x) · exp(iy)

For f(z) = ez to be an onto function:

Let the codomain of f be C \ {0} because ez can never be zero.

For f(z) = ez to be a one-one function, ez1 = ez2 =⇒ z1 = z2.
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Consider z1 := x1 + iy1 and z2 := x2 + iy2.

∴ ez1 = ez2 =⇒ ex1+iy1 = ex2+iy2

=⇒ ex1eiy1 = ex2eiy2

This is true iff x1 = x2 and y1 = y2 + 2nπ, n ∈ Z. The function is clearly not injective.

Let domain of f be {x+ iy | y ∈ [0, 2π) , x ∈ R}.

Domain of f : {x+ iy | y ∈ [0, 2π) , x ∈ R}

Codomain of f : C \ {0}

(Ans.)

Q.20. Restrict the domain and range such that the function z2, z ∈ C is a bijective.

Assume that the function f : C→ C is defined as: f(z) := z2.

z := x+ iy =⇒ f(z) = z2 = (x2 − y2) + i(2xy)

f(z) = z2 is already an an onto function because if z is defined in the polar form (reiθ)

then f(z) becomes r2ei(2θ). We can choose any arbitrarily small or large r and θ to obtain

every complex number in C.

For f(z) := z2 to be a one-one function: (z1)
2
= (z2)

2
=⇒ z1 = z2 must be true. But:

(z1)
2 = (z2)

2 =⇒ (z1)
2 − (z2)

2 = 0

∴ (z1 − z2)(z1 + z2) = 0

∴ z1 = z2 or z1 = −z2

To make f one to one, we must select two quadrants such that z and −z do not appear in

the domain together but also such that most of the complex plane is covered by the range.

Selecting the set {x + iy | x > 0} ∪ {x + iy | x = 0, y ≥ 0} as the domain, we get the

entire complex plane C as the range.

Domain of f : {x+ iy | x > 0} ∪ {x+ iy | x = 0, y ≥ 0}

Codomain of f : C

(Ans.)

4.2.10 Some Special Mappings

A few of the characteristic complex functions or mappings are widely used and hence, have been

given special names. They are as follows:

• Translation Map: f(z) := z+ c where c ∈ C, translates all the points in the complex plane

by the vector
[
Re(x) Im(x)

]⊤
.

• Rotation and Scaling Map: f(z) := cz where c ∈ C, applies a linear transformation

characterised by

[
|c| cos(arg(c)) −|c| sin(arg(c))
|c| sin(arg(c)) |c| cos(arg(c))

]
to all the points in the complex plane.
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• Inverse Map: f(z) := 1/z is an important function for many reasons, but it’s most apparent

useful property is that it is the inverse of itself.

Q.21. Find the image of the rectangle (in the complex plane) bound by the lines x = 0, y = 0,

x = 2, y = 2 when the function f which is defined as f(z) := z− (1− i) is applied to every

point in the complex plane.

x

y

(0, 0) (2, 0)

(0, 2) (2, 2)

(−1, 1) (1, 1)

(−1, 3) (1, 3)

u

v

As we can see, the points of the rectangle are now bound by the lines x = −1, x = 1, y = 1

and y = 3. (Ans.)

Q.22. Find the image of the circle (in the complex plane) which follows the equation |z| = 2

when the function f which is defined as f(z) := z − (3 + 2i) is applied to every point in

the complex plane.

The output of the function f will be another complex number (say w).

∵ w = f(z) := z − (3 + 2i) =⇒ z = w + (3 + 2i)

∴ |z| = 2 =⇒ |w + (3 + 2i)| = 2 ⇐⇒ |w − (−3− 2i)| = 2

The output of the functionf when applied to the points inside a circle is another circle of

the same radius but transferred to the point (−3,−2) in the complex plane. (Ans.)

r = 2

x

y

(0, 0)

r = 2
u

(−3,−2)

Q.23. Consider the function f : C→ C where f(z) := 3z + (2 + i) and its effect on the region in

the complex plane which follows the following relation. |z − 1| = 1.
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f(z) := 3z + (2 + i)

∴ f(x+ iy) := (3x+ 2) + i(3y + 1)

∴ (Let f(x+ iy) = (u+ iv))

∴ (u+ iv) := (3x+ 2) + i(3y + 1)

∴ x =
u− 2

3
and y =

v − 1

3

|z − 1| = 1 =⇒
√
(x− 1)2 + y2 = 1

=⇒ (x− 1)2 + y2 = 12

=⇒

(
u− 5

3

)2

+

(
v − 1

3

)2

= 1

=⇒ (u− 5)2 + (v − 1)2 = 32

which is another circle centered at (5, 1) and

with radius 3. (Ans.)

R

I

Pre-image

(1, 0)

Image

(5, 1)

f

Q.24. Consider the function f : C → C where f(z) := (1 + i) · z and its effect on the region in

the complex plane bound by x = 0, y = 0, x = 1 and y = 1.

Let z := x+ iy and f := u+ iv. Therefore,

f(z) := (1 + i) · (x+ iy) =⇒ (u+ iv) = (x− y) + i(x+ y) =⇒ u = x− y and v = x+ y

On solving this linear system of equations we get x = (u+ v)/2 and y = (v − u)/2 which

we substitute in the different equations governing the shape of the (square) region.

1. x = 0 =⇒ (u + v)/2 = 0 =⇒ u + v =
0 =⇒ u = −v

2. y = 0 =⇒ (v − u)/2 = 0 =⇒ v − u =
0 =⇒ u = v

3. x = 1 =⇒ (u + v)/2 = 1 =⇒ u + v =
2 =⇒ v = −u+ 2

4. y = 1 =⇒ (v − u)/2 = 1 =⇒ v − u =
2 =⇒ v = u+ 2

Pre-image

Image

R

I

Another square which is rotated by 45o about the origin (in the counterclockwise direction)

and has
√
2 times larger sides is the final image. (Ans.)

Q.25. Find out what happens to the circle |z| = 1 in the complex plane when we apply the

transformation f := 1/z to the entire plane.
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For w = f(z) :=
1

z
=

z

|z|
; u+ iv :=

x

|z|
+ i
− y

|z|
=⇒ x = |z| · u and y = −|z| · v.

For the points (z0) on the circle where |z| = 1:

|z| = 1 =⇒
√
x2 + y2 = 1 =⇒ x2 + y2 = 1 =⇒ |z0|(u2 + v2) = 1 =⇒ u2 + v2 = 1.

If we have a closer look at the equation w =
1

|z|
(x− iy) we can see that every point in

the complex plane is flipped along the real-axis and is scaled by the multiplicative inverse

of its distance from origin.

In simpler words, all points have been reflected along the real axis and points outside the

circle |z| = 1 are mapped to locations inside the circle and vice-versa. (Ans.)

Q.26. Find the image of the circle in the complex plane described by the equation |z − 3| = 1

when the inversion map 1/z is applied to the entire plane.

Let the set K := {k : |k − 3| = 1, k ∈ C} represent the set of values for which we are

finding the image of the function and w be the corresponding image of a given element in

K. w ∈ im(K) ⇐⇒ f−1(w) ∈ K ⇐⇒ 1/w ∈ K.

∵ 1/w ∈ K =⇒ |1/w − 3| = 1

∴|(1 − 3w)/w| = 1 (Since |a/b| = |a|/|b|, ∀a, b ∈ C)

∴|1− 3w| = |w| =⇒ |1− 3w|2 = |w|2

∴(1− 3w)(1− 3w) = w · w

∴(1− 3w)(1− 3w) = w · w

∴1− 3(w + w) + 9w · w = w · w

∴1− 3 · 2Re(w) + 8w · w = 0

∴1− 6u+ 8(u2 + v2) = 0 (Let w := u+ iv)

∴8u2 − 6u+ 9/8 + 8v2 + 1 = 9/8 (Completing the square)

∴(2
√
2u− 3

2
√
2
)2 + 8v2 = 1/8

∴(u− 3/8)2 + v2 = (1/8)2 (Dividing by 8 on both sides)

The circle present at (3, 0) with radius 1 gets mapped to another circle at (3/8, 0) with a

radius of 1/8. i.e.

K := {k : |k − 3| = 1, k ∈ C} becomes W := {w : |w − 3/8| = 1/8, w ∈ C} (Ans.)

Q.27. Find the image of the circle |z − 1| = 1 under w = 1/z.

Let the set K := {k : |k − 1| = 1, k ∈ C} represent the set of values for which we are

finding the image of the function and w be the corresponding image of a given element in

K. w ∈ im(K) ⇐⇒ f−1(w) ∈ K ⇐⇒ 1/w ∈ K.

1/w ∈ K =⇒ |1/w − 1| = 1

|1− w| = |w|
(
∵

∣∣∣∣z1z2
∣∣∣∣ = |z1||z2|

)
|w − 1| = |w|
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w is the set of all points whose distance from the point (1, 0) and (0, 0) is the same. This

describes a line which passes through the midpoint of these two points and whose direction

is perpendicular to that of the line joining these two points.

R

I

(0, 0) (1, 0)

Re(w) = 1/2

w ∈ {z ∈ C : Re(z) = 1/2} (Ans.)

Q.28. Find the image of the line {x+ iy ∈ C : x = y} under w = 1/z.

Let the set K represent the set of values for which we are finding the image of the function

and w be the corresponding image of a given element in K. w ∈ im(K) ⇐⇒ f−1(w) ∈
K ⇐⇒ 1/w ∈ K.

∵ 1/w ∈ K =⇒ Re(1/w) = Im(1/w)

∴
u

u2 + v2
=

− v

u2 + v2

(
∵

1

z
=

z

|z|2

)
∴u = −v

The line x = y gets mapped onto x = −y under inversion mapping.

w ∈ {u+ iv ∈ C : u = −v} (Ans.)

Q.29. Prove that the inversion mapping 1/z always maps a straight line or a circle onto another

straight line or a circle.

Proof. Let Q(x, y) = A(x2 + y2) + Bx + Cy +D be a polynomial in x and y. If the two

variables are the real and imaginary parts of a complex number respectively then:

Q(x, y) = 0 represents

a circle ∀A ̸= 0

a straight line A = 0
on the complex plane. (B,C,D ∈ R)

Inversion

w := u+ iv

Q(x, y) = 0

∴A(x2 + y2) +Bx+ Cy +D = 0

∴A(z · z) +B

(
z + z

2

)
+ C

(
z − z

2

)
+D = 0

∴
A

w · w
+

B

2

(
1

w
+

1

w

)
+

C

2

(
1

w
−

1

w

)
+D = 0

∴
A

w · w
+

B

2

(
w + w

w · w

)
+

C

2

(
w − w

w · w

)
+D = 0

∴D(w · w)− C

(
w − w

2

)
+B

(
w + w

2

)
+A = 0

∴D(u2 + v2)− Cv +Bu+A = 0

This curve is of the same form as Q(x, y) = 0 and represents a circle or a straight line

depending on the value of D.
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4.2.11 Orthogonal Trajectories

Consider an analytic function f(z) := u(x, y) + iv(x, y), then the equations u(x, y) = c1 and

v(x, y) = c2 represent the level curves in the complex plane where u and v take a specific value.

Let us find the slopes of the tangent to these curves:

u(x, y) = c1 v(x, y) = c2

∴
∂u

∂x
dx+

∂u

∂y
dy = 0 ∴

∂v

∂x
dx+

∂v

∂y
dy = 0

∴

(
dy

dx

)
u=c1

= −
ux

uy
∴

(
dy

dx

)
v=c1

= −
vx

vy

∴mu = −
ux

uy
∴mv = −

vx

vy

For an analytic function, the CR equations are followed which means that the product mu ·mv

becomes −1. Which means that they are perpendicular(orthogonal) to each other.

4.3 Conformal Mapping

Linear Fractional Transformation (LFT), Möbius transformation.

”Every möbius tranformation is conformal but not every conformal mapping is-

SHUT UP!!! Biden Blast

Möbius transformations ⊂ Conformal maps

Q.30. Find the möbius transformation such that the points −1, 0, 1 are mapped onto the points

−i, 1, i respectively.

Let w :=
az + b

cz + d
be the required transformation for some a, b, c, d ∈ C.

−1 7→ −i =⇒ −i = a(−1) + b

c(−1) + d

∴ −i = −a+ b

−c+ d
=⇒ −a+ b− ci+ di = 0 −→ (1)

0 7→ 1 =⇒ 1 =
a(0) + b

c(0) + d

∴ 1 =
b

d
=⇒ b− d = 0 −→ (2)

1 7→ i =⇒ i =
a(1) + b

c(1) + d

∴ i =
a+ b

c+ d
=⇒ a+ b− ci− di = 0 −→ (3)
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From (1), (2) and (3), −1 1 −i i

0 1 0 −1
1 1 −i −i



a

b

c

d

 =


0

0

0

0


By Gauss elimination,

∴

−1 1 −i i

0 1 0 −1
1 1 −i −i

 ∼
−1 1 −i i

0 1 0 −1
0 2 −2i 0

 (
R3 −→ R3 +R1

)

∼

−1 1 −i i

0 1 0 −1
0 0 −2i 2

 (
R3 −→ R3 − 2R2

)

Upon back-substitution, we get

−2ci+ 2d =⇒ d = ci

b− d = 0 =⇒ b = d = ci

−a+ b− ci+ di =⇒ a =�ci−�ci+ ci2 = −c

∴ w :=
az + b

cz + d
=
−�cz + (−�ci)
�cz + (−�ci)

=
−z − i

z − i

(Ans.)

4.3.1 Cross Ratio

A transformation which maps the points z1, z2, z3 to w1, w2, w3 respectively is

(z1 − z2)(z3 − z)

(z2 − z3)(z − z1)
=

(w1 − w2)(w3 − w)

(w2 − w3)(w − w1)
(4.13)

Theorem 3. A möbius transformation is uniquely determined by the assignment of three points

z1, z2 and z3 and their corresponding distinct images w1, w2 and w3.

Q.31. Determine the LFT that maps the points 2, i,−2 onto the points 1, i,−1 respectively using

cross ratio.

Given (z1 = 2 7→ w1 = 1), (z2 = i 7→ w2 = i) and (z3 = −2 7→ w1 = −1).

Computing
z1 − z2

z2 − z3
=

2− i

i+ 2
Computing

w1 − w2

w2 − w3
=

1− i

i+ 1

=
(2− i)2

22 + 12
=

(1− i)2

12 + 12

=
3− 2i

5
=
− 2i

2
= −i
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From eq. (4.13),

(3− 2i)(−2− z)

5(z − 2)
=
− i(−1− w)

w − 1

(3i+ 2)(z + 2)

5(z − 2)
− 1 =

2

w − 1

∴
(3− 2i)(z + 2)

5i(z − 2)
=
− (w + 1)

w − 1
∴
(3i+ 2− 5)z + 2(3i+ 2 + 5)

5(z − 2)
=

2

w − 1

∴
(�−3i�−2)(z + 2)

5(z − 2)
=

�−(w + 1)

w − 1
∴
w − 1

2
=

5z − 10

(3i− 3)z + (6i+ 14)

∴
(3i+ 2)(z + 2)

5(z − 2)
=

w + 1

w − 1
=

���w − 1

���w − 1
+

2

w − 1
∴w =

10z − 20

(3i− 3)z + (6i+ 14)
+ 1

∴
(3i+ 2)(z + 2)

5(z − 2)
= 1 +

2

w − 1
∴ w =

(3i+ 7)z + (6i− 6)

(3i− 3)z + (6i+ 14)
(Ans.)

(Go to next column)

4.3.2 Inverse Möbius Transformation

Consider an LFT w =
az + b

cz + d
, ad− bc ̸= 0.

The inverse transformation is given by,

z =
−dw + b

cw − a
, (−d)(−a)− bc ̸= 0 =⇒ ad− bc ̸= 0 (4.14)

Therefore, if w is an LFT, then its inverse is also an LFT. Such a transformation is said to be

bilinear.

Q.32. Can we define a bilinear transformation for the transformation
4z + 2

2z + 1
?

A bilinear transform is defined for any LFT if and only if ad−bc ̸= 0, for the given function

ad−bc = 4 ·1−2 ·2 = 0. Hence, we cannot define a bilinear transformation for the given

LFT. (Ans.)

Linear fractional transformations as matrices

Consider representing the transformation w =
az + b

cz + d
by the matrix

[
a b

c d

]
. Therefore, the

transformation is an LFT iff ad− bc ̸= 0 i.e. det

([
a b

c d

])
̸= 0.

The inverse transformation can be represented by the negative adjugate of the above matrix, i.e.

− adj

([
a b

c d

])
=

[
−d b

c −a

]
.
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4.3.3 Fixed Points

Fixed point of a transformation f(z) =
az + b

cz + d
can be obtained by putting f(z) = z.

Q.33. Find the fixed point of the transformation w =
3z − 4

z + 3
.

To find the fixed point of the given transformation, put f(z) = z.

z =
3z − 4

z + 3

∴ z(z + 3) = 3z − 4 =⇒ z2 + 3z = 3z − 4

∴ z2 +��3z =��3z − 4 =⇒ z2 = −4

∴ z = 2i ∨ z = −2i

Thus, z ∈ {2i,−2i} . (Ans.)

4.4 Complex Integration

4.4.1 Line Integral

A line integral is an integral that is evaluated on a function along a curve. The line integral of

the function f(z) along the curve C is denoted by
∮
C
f(z) dz.

Q.34. Evaluate
∮ 2+i

0
(z)

2
dz

(i) along the line x = 2y.

I =

∮ 2+i

0

(z)2 dz =

∮ (x,y)=(2,1)

(x,y)=(0,0)

(x2 − y2 − 2ixy)(dx+ i dy)

(Since, we travel along the given line: x = 2y =⇒ dx = dy)

=

∮ 1

0

(4y2 − y2 − 4iy2)(dy)(2 + i) = (3− 4i)(2 + i)

∮ 1

0

y2 dy

= (10− 5i)

[
y3

3

]1
0

I =
10− 5i

3

Thus, the solution of the given line integral is
10− 5i

3
. (Ans.)
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(ii) along the line y = 0 followed by the line x = 2.

I =

∮ 2+i

0

(z)2 dz =

∮ (x,y)=(2,1)

(x,y)=(0,0)

(x2 − y2 − 2ixy)(dx+ i dy)

=

∮ (x,y)=(2,0)

(x,y)=(0,0)

(x2 − y2 − 2ixy)(dx+ i dy) +

∮ (x,y)=(2,1)

(x,y)=(2,0)

(x2 − y2 − 2ixy)(dx+ i dy)

(For the path y = 0, dy = 0 and the path x = 2, dx = 0)

=

∮ 2

0

x2 dx+ i

∮ 1

0

(4− y2 − 4iy) dy

=

[
x3

3

]2
0

+ i

[
4y −

y3

3
− 2iy2

]1
0

=
8

3
+ 2 + i

(
4−

1

3

)

I =
14

3
+

11i

3

Thus, the solution of the given line integral is 14/3 + 11/3i . (Ans.)

Q.35. Evaluate
∮ 2+i

1−i
2x+ iy+1dz along the straight line from the point 1− i to the point 2+ i.

The given straight line passes through the points (1,−1) and (2, 1). The slope of this line

is (1 − (−1))/(2 − 1) = 2/1 = 2. The intercept of this line can be found out by substituting

either of the two given points in the formula y = 2x+ c =⇒ c = y − 2x. If we substitute

(2, 1) in the given formula, then we get c = −3.

We also require the relation between the rates of changes of the variables x and y. So upon

differentiating the given equation of the line w.r.t. x and separating the variables, we get

dy = 2dx.

I =

∮ 2+i

1−i

2x+ iy + 1dz =

∮ (x,y)=(2,1)

(x,y)=(1,−1)

(2x+ 1 + iy)(dx+ i dy)

=

∮ x=2

x=1

(2x+ 1 + i(2x− 3))(1 + 2i) dx

= (1 + 2i)

∮ 2

1

(2x+ 1 + i(2x− 3)) dx

= (1 + 2i)
[
(x2 + x) + i(x2 − 3x)

]2
1

I = (1 + 2i) ((6− 2i)− (2− 2i)) = (1 + 2i)(4) = 4 + 8i

Thus, the solution of the given line integral is 4 + 8i . (Ans.)
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Q.36. Evaluate
∮ 1+i

0
z2 dz along the parabola x = y2.

I =

∮ 1+i

0

z2 dz =

∮ (x,y)=(1,1)

(x,y)=(0,0)

(x2 − y2 + 2ixy)(dx+ i dy)

(Since we travel along the given parabola: x = y2 =⇒ dx = 2y dy)

=

∮ y=1

y=0

(y4 − y2 + 2iy3)(2y + i) dy = −
∮ 1

0

(2y5 − 2y3 − 2y3 + i(y4 − y2 + 4y4)) dy

=

∮ 1

0

(2y5 − 4y3 + i(5y4 − y2)) dy =

[
y6

3
− y4 + i

(
y5 −

y3

3

)]1
0

=

[
1

3
− 1 + i

(
1−

1

3

)]

I = −
2

3
+ i

2

3

Thus, the solution of the given line integral is −2

3
+ i

2

3
. (Ans.)

Q.37. Evaluate the integral of the function f(z) = x2 + ixy from A(1, 1) to B(2, 4) along the

curve x = t and y = t2.

For the given curve, (x = t and y = t2) =⇒ (dx = dt and dy = 2tdt. Thus, dz =

(1 + 2it) dt. The function f(z) becomes f(t) = t2 + it3

For the points A and B, t = 1 and t = 2 respectively. Thus,

I =

∮
AB

f(z) dz =

∮ 2

1

f(t)(1 + 2it) dt

=

∮ 2

1

(t2 + it3)(1 + 2it) dt =

∮ 2

1

(t2 − 2t4 + i(3t3)) dt =

[
t3

3
−

2

5
t5 + i

3

4
t4

]2
1

=

[(
8

3
−

64

5
+ 12i

)
−

(
1

3
−

2

5
+

3

4

)]
= −

151

15
+ i

45

4

Thus, the solution of the given line integral is −
151

15
+ i

45

4
. (Ans.)

When the curve is a circle

Whenever we encounter a closed curve (e.g. circle), we can usually parameterize them in some

way such that the integral goes from a closed line integral in the Cartesian coordinates to an

open one in the parameterized coordinates.

For a circle, this parameter is θ, the angle which is made with the direction parallel to the

positive x-axis. Thus, for a circle with radius r, centered at (c0, c1), the value of x and y is

c0 + r cos θ and c1 + r sin θ and the value of dz = dx+ idy = r(− sin θ + i cos θ) dθ = rieiθ dθ .
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Q.38. Evaluate
∮
C
z + 2z dz where C is the unit circle.

I =

∮
C

z + 2z dz =

∮
C

3x+ iy dz

(For the unit circle, centered at origin, (c0, c1) = (0, 0) and r = 1)

=

∮ π

−π

(3 cos θ + i sin θ)(− sin θ + i cos θ) dθ

=

∮ π

−π

(−4 cos θ sin θ + i(3 cos2 θ − sin2 θ)) dθ

=

∮ π

−π

−2 sin(2θ) + i(4 cos2 θ − 1) dθ

(∵ sin(2θ) is an odd function and

∮
cos2 θ = θ

2 + cos(2θ)
4 + c)

= 0 + [i2θ + i cos(2θ)− iθ]
π
−π = i(π + 1)− i(−π + 1) = i2π

Thus, the value of the given line integral is 2πi . (Ans.)

Q.39. Evaluate
∮
C

2z+5
z dz where C is the lower half of the circle |z| = 2.

I =

∮
C

2z + 5

z
dz =

∮
C

2 +
5

z
dz =

∮
C

2 +
5z

|z|2
dz

(Multiplying and dividing by z)

=

∮
C

2 +
5

22
z dz =

∮
C

2 + 1.25z dz

∵ (For the given curve |z| = 2)

(Assuming we travel in the counterclockwise direction, θ ∈ [−π, 0])

=

∮ 0

−π

(2 + (1.25)(2 cos θ − 2i sin θ)) 2(− sin θ + i cos θ) dθ

=

∮ 0

−π

(4 + 5 cos θ − 5i sin θ)(− sin θ + i cos θ) dθ

=

∮ 0

−π

(−4 sin θ((((((−5 cos θ sin θ +(((((
5 cos θ sin θ + 4i cos θ + 5i cos2 θ + 5i sin2 θ) dθ

=

∮ 0

−π

4(− sin θ + i cos θ) + 5i dθ

= 4 [cos θ + i sin θ]
0
−π + 5i [θ]

0
−π = 4(2) + 5iπ

Thus, the solution to the given line integral is 8 + 5πi . (Ans.)

Q.40. Evaluate
∮
C

dz
(z−3)4

where C : |z − 3| = 4.

Let w := rwe
iϕ ∈ C such that z − 3 = w. Then the associated circle |z − 3| = 4 becomes
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|w| = 4 and the infinitesimal dz becomes dw. (∵ w = z − 3 =⇒ dw = dz)

I =

∮
C

dz

(z − 3)4
=⇒

∮
C′

dw

w4

=

∮ ϕ=π

ϕ=−π

(rw · eiϕ)−4 dϕ = 4−4

∮ π

−π

(e−4iϕ) dϕ

=
1

256

[
e−4iϕ

−4i

]π
−π

=
i

1024
(e−i4π − ei4π) =

i

1024
(1− 1)

I = 0

Thus, the solution to the given line integral is 0 . (Ans.)

Q.41. Evaluate
∮
C
z dz where C is the left half of the unit circle from z = −i to z = i.

I =

∮
C

z dz =

∮ θ=π/2

θ=3π/2

(e−iθ) d(eiθ)

=

∮ π/2

3π/2

ie−iθeiθ dθ = i

∮ π/2

3π/2

1 dθ

= i[θ]
π/2
3π/2 = −iπ

Thus, the solution to the given line integral is −iπ . (Ans.)

4.4.2 Cauchy’s Theorem

Types of Curves

To study Cauchy’s theorem, we must know about the types of curves we can encounter in the

complex plane:

Figure 4.6: (From left to right) Simple open, Simple closed, not simple but closed

Figure 4.7: (From left to right) Simple connected, multiple connected
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Theorem 4. If a function f(z) is analytic and its derivative f ′(z) is continuous at each point

within and on a simple closed curve C then the integral of f(z) along the closed curve C is zero.∮
C

f(z) dz = 0 (4.15)

4.4.3 Cauchy’s Integral Formula

If f(z) is analytic within and on a simple closed curve C and z0 is any point within C then∮
C

f(z)

z − z0
dz = 2πi · f(z0) (4.16)

Q.42. Evaluate the integral of 1/z along the curve |z − 2| = 2.

The given function f(z) = 1/z is not defined for z = 0 which is in the given region

|z − 2| = 2. Since a circle is a simple closed curve, we can apply Cauchy’s integral formula

for f(z) = g(z)
z−z0

= 1
w =⇒ g(z) = 1. From eq. (4.16),

∮
C
f(z) dz = 2πi · g(z0) = 2πi · 1 =

2πi.

Thus, the solution to the given line integral is 2πi . (Ans.)

Q.43. Evaluate
∮
C

z
z2−3z+2 dz where C : |z − 1| = 1/2.

The given function f(z) = z
z2−3z+2 is not defined for z = 1 and z = 2 out of which, z = 1

does exist in the given region |z − 1| = 1/2. Since a circle is a simple closed curve, we can

apply Cauchy’s integral formula for f(z) = g(z)/z − z0 = z/(z − 1)(z − 2) =⇒ g(z) = z/z − 2.

From eq. (4.16),
∮
C
f(z) dz = 2πi · g(z0) = 2πi · g(1) = 2πi · 1/− 1 = −2πi.

Thus, the solution to the given line integral is −2πi . (Ans.)

Q.44. If f(z) = z
z2−5z+6 , evaluate

∮
C
f(z) dz where C : |z − 2| = 2.

The given function f(z) = z
z2−5z+6 is not defined for z = 2 and z = 3 both of which

exist in the given region |z − 2| = 2. Since a circle is a simple closed curve, we can apply

Cauchy’s integral formula:

I =

∮
z

z2 − 5z + 6
dz =

∮
z

(z − 2)(z − 3)
dz

(Decompose it into partial fractions)

=

∮
C

−
2

z − 2
+

3

z − 3
dz

= 2πi · g(z0) + 2πi · h(z0)

= −4πi+ 6πi

I = 2πi

Thus, the solution to the given line integral is 2πi . (Ans.)

4.4.4 Generalized Cauchy’s Integral Formula

If f(z) is analytic within and on a simple closed curve C and z0 is any point in the region then∮
C

f(z)

(z − z0)
n+1 dz =

2πi

n!
· d

nf

dzn
(z0) (4.17)
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Q.45. Evaluate
∮
C

z
z2−4z+4 dz where C : |z − 2| = 3.

From eq. (4.17),

I =

∮
C

z

z2 − 4z + 4
dz =

∮
C

z

(z − 2)2
dz

(
Which is of the form:

f(z)

(z − z0)n+1

)

=
2πi

1!
· df
dz

= 2πi · (1) = 2πi

Thus, the solution to the given line integral is 2πi . (Ans.)
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Chapter 5
Elementary Number Theory

5.1 Foundations

5.1.1 Integers

The set of integers consists of the numbers zero (0), counting numbers (1, 2, 3, . . . ) and their

additive inverses (−1,−2,−3, . . . ). It is denoted as Z or Z.

Z := {. . . ,−3− 2− 1, 0, 1, 2, 3, . . . }

• The set of integers under the addition (+) operation is closed, associative, has an identity

element (0), has inverses and commutative.

• The set of integers under the multiplication (×) operation is closed, associative, has an

identity element (1) and commutative.

Moreover, multiplication distributes over addition in Z.

The set of positive integers is denoted by Z+ or N (natural numbers) and negative integers by

Z−. A discrete range {a, a+ 1, a+ 2, . . . , b− 2, b− 1, b} is denoted by Ja, bK.

In this chapter, every variable is assumed to be an integer unless stated otherwise.

5.1.2 Divisibility

For two integers a ̸= 0 and b, if b = aq for some integer q, then a is said to be a factor or divisor

of b, and b is said to be divisible by a or a multiple of a. This is denoted by a|b, which is read

as “a divides b”.

a|b ⇐⇒ ∃q ∈ Z : b = aq (5.1)

If b = aq + r for some integers q and r ∈ J1, |a| − 1K, then b is said to be not divisible by a and

is denoted by a��|b.

a��|b ⇐⇒ ∃q ∈ Z ∃r ∈ J1, |a| − 1K : b = aq + r (5.2)
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In the expression b = aq + r, b is called the dividend, a is called the divisor, q is called the

quotient and r is called the remainder.

Note:

The set [a, b] ∧ Z is referred to as Ja, bK commonly throughout this book.

Q.1. Prove that the square of an even number is even and the square of an odd number is odd.

Proof. We will prove the statement by cases.

Case 1 Consider an even number a := 2q. Squaring both sides, we obtain a2 = 4q2 =

2(2q2), which is even.

∴ The square of an even number is even. −→ (i)

Case 2 Consider an odd number a := 2q + 1. Squaring both sides, we obtain a2 =

4q2 + 4q + 1 = 2(2q2 + 2q) + 1, which is odd.

∴ The square of an odd number is odd. −→ (ii)

From (i) and (ii), we can deduce that the square of an even number is even and the square

of an odd number is odd.

Q.2. Prove that the square of an odd integer can be written in the form 8k + 1.

Proof. Consider an odd integer a := 2q+1. Squaring both sides, we obtain a2 = 4q2+4q+

1 = 4q(q+1). Since q and q+1 are consecutive integers, q(q+1) is even, i.e. q(q+1) := 2k

for some integer k.

Therefore, a2 = 4 · 2k + 1 = 8k + 1 =⇒ the square of any odd integer can be written in

the form 8k + 1.

Q.3. Prove that the cube of any integer has one of the forms: 9k, 9k + 1 or 9k + 8.

Proof. We will prove the statement by cases.

Case 1 Consider any integer a of the form a := 3q. Cubing both sides, we obtain a3 =

27q3 = 9(3q3) := 9k for some integer k −→ (i).

Case 2 Consider any integer a of the form a := 3q + 1. Cubing both sides, we obtain

a3 = 27q3 + 27q2 + 9q + 1 = 9(3q3 + 3q2 + q) + 1 := 9k + 1 for some integer

k −→ (ii).

Case 3 Consider any integer a of the form a := 3q + 2. Cubing both sides, we obtain

a3 = 27q3 + 54q2 + 36q + 1 = 9(3q3 + 6q2 + 4q) + 8 := 9k + 8 for some integer

k −→ (iii).

From (i), (ii) and (iii), we can deduce that the cube of any integer has one of the forms:

9k, 9k + 1 or 9k + 8.

5.1.3 Prime Numbers

A prime number is a positive integer that has exactly two distinct positive factors — 1 and itself.

The first few primes are 2, 3, 5, 7, 11, . . .

A number that has more than two distinct positive divisors is said to be composite. The first

few composites are 4, 6, 8, 9, 10, . . .
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1 is said to be neither prime nor composite, as it has exactly one positive divisor.

p is prime ⇐⇒ p > 1 ∧ (∀d ∈ N d|p =⇒ d = 1 ∨ d = p)

Cardinality of Primes

There are infinitely many prime numbers. It can be proven using Euclid’s proof.

Proof. Suppose for contradiction, there are only r prime numbers: p1, p2, . . . , pr.

Construct the integer n :=
∏r

i=1 pi + 1 = p1p2 · · · pr + 1. Since by assumption there are only

finitely many primes, n must be composite, i.e. at least one prime pi must divide n.

Comparing with b = aq+r, n is the dividend, each pi can be considered a divisor, each
(∏r

j=1 pj

pi

)
can be considered a quotient and 1 is the remainder.

However, from eq. (5.2) we can see that ∀pi pi��|n. Therefore, there are no factors of n other than

1 and itself =⇒ n is prime.

Now if n is added to the set of primes {p1, p2, . . . , pr, n}, we can iterate this process and always

produce more prime numbers. Therefore, there are infinitely many primes.

5.2 Modular Arithmetic

5.2.1 Modulus Operator

The modulus operator is used to find the remainder when an integer a is divided by another

integer b. It is denoted as a% b or amod b, and is read as “a modulo b”.

Modulo m, integers can be imagined as a clock with m numbers labeled from 0 to m− 1. This

is because the remainders cycle every m numbers.

0

12

Figure 5.1: Modulo 3

0
1

2

3

4

5
6

7

8

9

10

11

Figure 5.2: Modulo 12

Q.4. Show that 3a2 − 1 is not a perfect square.

Proof. Observe that (3a2 − 1)mod 3 = (3(a2 − 1) + 2)mod 3 = 2.

Now, consider squaring any integer modulo 3:

(3q)2 mod3 = 9q2 mod3 = 0 −→ (i).

(3q + 1)2 mod3 = (9q2 + 6q + 1)mod 3 = (3(3q2 + 2q) + 1)mod 3 = 1 −→ (ii).

(3q + 2)2 mod3 = (9q2 + 12q + 4)mod 3 = (3(3q2 + 4q + 1) + 1)mod 3 = 1 −→ (iii).
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From (i), (ii) and (iii), we can deduce that the square of any integer has a remainder of

either 0 or 1 modulo 3, i.e. 3a2 − 1 cannot be the square of any integer.

5.2.2 Properties of Divisibility

For all integers a, b, c and d the following properties hold:

• a|0, 1|a, a|a

• a|1 ⇐⇒ a = ±1

• (a|b ∧ c|d) =⇒ ac|bd

• (a|b ∧ b|c) =⇒ a|c

• (a|b ∧ b|a) =⇒ |a| = |b|

• (a|b ∧ b ̸= 0) =⇒ |a| ≤ |b|

Proof.

a|b =⇒ b := aq q ̸= 0

∴|b| = |aq|, |q| ≥ 1

∴|b| = |a||q|, |q| ≥ 1 =⇒ |b| ≥ |a|

• (a|b ∧ c|d) =⇒ ∃x ∃y : a|bx+ cy

Proof. a|b ⇐⇒ b := aq1, a|c ⇐⇒ c := aq2

Now, bx+ cy = aq1x+ aq2y = a(q1x+ q2y) =⇒ a|bx+ cy .

Corollary 1. If a|bk, where k = 0, 1, 2, . . . , n then a|(b0x0 + b1x1 + · · ·+ bnxn).

5.2.3 Division Algorithm

Given integers a and b (not both zero). Then there exists a unique ordered pair of integers q

and r such that:

a = bq + r, 0 ≤ r < b

Proof. Consider a set S := {a− bx : a− bx ≥ 0 ∧ x ∈ Z}.

S is a non-empty set of non-negative integers.

Therefore, by the well-ordering principle, there exists a least element r ∈ S. So, r = a− bq ≥ 0.

We need to show that r < b. For contradiction, assume r ≥ b.

Now,

r ≥ b

=⇒ r − b ≥ 0

=⇒ a− bq − b ≥ 0

=⇒ a− (q + 1)b ≥ 0 =⇒ a− (q + 1)b ∈ S

Or, r − b ∈ S.
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∵ b > 0, r − b < r, which implies that r − b is an element lesser than r, which contradicts our

claim that r is the least element.

Therefore, by contradiction r < b.

Now to prove uniqueness:

Let us consider that for the integers a and b, there exist two pairs of ordered pairs (q1, r1) and

(q2, r2) such that a = bq1 + r1 and a = bq2 + r2 where r1, r2 ∈ [0, b).

Consider the integer |r1 − r2|,

|r1 − r2| = |bq1 − bq2|

= |b||q1 − q2|

= b|q1 − q2|

But we know that r1, r2 ∈ J0, b− 1K. Therefore, |r1 − r2| < b.

∵ |r1 − r2| < b

∴ b|q1 − q2| < b

∴ |q1 − q2| < 1

But since, q1, q2 ∈ Z. Therefore the only possibility is |q1 − q2| = 0 =⇒ (q1 = q2) ∧ (r1 = r2).

Hence, we have proved the uniqueness as well.

Theorem 5. Given two non-zero integers a and b, there exist integers x and y such that ax+by =

gcd(a, b).

Proof. Consider a set S := {ax+ by : ax+ by > 0 ∧ x, y ∈ Z}.

Therefore, by the well-ordering principle, there exists a least element d ∈ S. So d = au+ bv > 0.

Now we must prove that d = gcd(a, b).

By the division algorithm,

a = dq + r , 0 ≤ r < d

r = a− dq

= a− (au+ bv)q

= a(1− uq) + b(vq)

∴ r ∈ S ∵ r ≥ 0

But since r < d, it means that r is the minimum element of S, which contradicts our original

assumption. It means that the only possible value of r is 0 i.e. r /∈ S.

This means that a = dq, i.e. d|a. Similarly, we can prove that d|b.

Any other common divisor of a and b of the form ax+ by which is greater than d does not exist.

We can easily prove this by contradiction.

Thus, we have proved that the gcd(a, b) is of the form ax+ by where x and y are integers,

Corollary 2. If the greatest common divisors of a and b is equal to 1, then there exist integers
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x and y such that ax+ by = 1.

5.3 Greatest Common Divisor

If a and b are arbitrary integers then a positive integer d is said to be the Greatest Common

Divisor (GCD) (or Highest Common Factor (HCF)) of a and b if d satisfies the following condi-

tions:

(i) d|a ∧ d|b

(ii) c|a ∧ c|b =⇒ c ≤ d

We denote this as gcd(a, b) = d.

Q.5. Evaluate gcd(−12, 30). Prime factorizing,

|−12| = 12 = 2× 2× 3

|30| = 30 = 2× 3 × 5

Therefore, the GCD of −12 and 30 is 2× 3 = 6 . (Ans.)

If gcd(a, b) = 1, then a and b are said to be relatively prime or coprime.

Theorem 6. If a|c and b|c with gcd(a, b) = 1, then ab|c.

Proof. Since a|c, we can say that c = ak1 and since b|c, we can say that c = bk2.

Let a = p11p12p13 · · · p1n and b = p21p22p23 · · · p2m. Where pij ; i ∈ {1, 2}; j ∈ J1,max(m,n)K
are the prime factors of a and b.

Now we can say that

c = pk11
11 pk12

12 pk13
13 · · · p

k1n
1n × k1 = k1 ×

n∏
j=1

p
kij

1j

c = pk21
21 pk22

22 pk23
23 · · · p

k2m
2m × k2 = k2 ×

m∏
j=1

p
k2j

2j

Since, gcd(a, b) = 1, it means that none of the prime factors of a are equal to prime factors of b.

It means that:

c =

 n∏
j=1

p
k1j

1j

×
 m∏

j=1

p
k2j

2j

× k3

∴ c = abk3

∴ ab | c

Hence, we have proved that ab|c.

5.3.1 Properties of the GCD

Least Common Multiple (LCM)

lcm (a, b) =
a× b

gcd (a, b)
(5.3)
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Euclid’s Lemma

If a|bc with gcd(a, b) = 1 then a|c.

Proof.

∵ a|bc

∴ bc = ak1

But, for any k2 ∈ N.

∵ gcd(a, b) = 1

∴ a�=bk2 ∧ b�=ak2

Therefore, we can say c = ak3 i.e. a|c.

5.3.2 Euclidean Algorithm

Let a and b be two integers whose greatest common divisor d can be obtained by applying the

division algorithm repeatedly applying the division algorithm to a and b.

gcd(a, b) = gcd(b, amod b) (5.4)

a = bq + r , 0 ≤ r < b

∴ b = rq1 + r1 , 0 ≤ r1 < r

∴ r = r1q2 + r2 , 0 ≤ r2 < r1

∴ r1 = r2q3 + r3 , 0 ≤ r3 < r2

...

∴ rn−1 = rnqn+1 + rn+1 , 0 ≤ rn+1 < rn

∴ rn = rn+1qn+2 , for some n+ 2, rn+2 = 0

∴ gcd(a, b) = rn+1

5.4 Linear Diophantine Equations

The equation

ax+ by = c, x, y ∈ Z+ ∪ {0}

where a, b and c are integers is called a linear Diophantine equation.

Theorem 7. The linear Diophantine equation ax + by = c has a solution iff d|c where d :=

gcd(a, b).

If (x0, y0) is any particular solution of ax+ by = c then all other solutions are given by:

x := x0 +

(
b

d

)
t, y := y0 −

(a
d

)
t

where t is an arbitrary integer.
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Q.6. A theater charges $1.80 for adult admission and $0.75 for children admission for a particular

evening; the total receipts were $90. Assuming more adults than children were present,

how many were there in the theater?

Suppose there were x adults and y children. According to the given conditons,

1.80x+ 0.75y = 90, x > y ≥ 0

or, 180x+ 75y = 9000

or, 12x+ 5y = 600 −→ (i).

By Euclidean algorithm,

12 = 5× 2 + 2

5 = 2× 2 + 1

2 = 1 × 2

Therefore, gcd(12, 5) = 1.

Expressing the GCD as a linear combination of a and b,

1 = 5− 2× 2

= 5− (12− 5× 2)× 2

= 5− 12× 2 + 5× 4

∴ 1 = 5(5) + 12(−2)

Therefore, 12(−2) + 5(5) = 1 =⇒ 12(−1200) + 5(3000) = 600 −→ (ii).

From (i) and (ii), x0 = −1200, y0 = 3000

The solution to the Diophantine equation is given by,

x = x0 +

(
5

1

)
t y = y0 −

(
12

1

)
t

∴ x = −1200 + 5t ∴ y = 3000− 12t

Given x > y ≥ 0

x > y y ≥ 0

∴ −1200 + 5t > 3000− 12t ∴ 3000− 12t ≥ 0

∴ 17t > 4200 ∴ 12t ≤ 3000

∴ t >
4200

17
=⇒ t ≥ 248 ∴ t ≤ 3000

12
=⇒ t ≤ 250
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Therefore, 248 ≤ t ≤ 250 =⇒ t ∈ {248, 249, 250}.

t = 248 =⇒ x = −1200 + 5× 248 = 40

y = 3000− 12× 248 = 24

t = 249 =⇒ x = −1200 + 5× 249 = 45

y = 3000− 12× 249 = 12

t = 250 =⇒ x = −1200 + 5× 250 = 50

y = 3000− 12× 250 = 0

There were 40 adults and 24 children , or 45 adults and 12 children ,

or 50 adults and no children in the theater. (Ans.)

5.5 Fundamental Theorem of Arithmetic

Theorem 8. Every positive integer greater than 1 is either prime or a product of primes, whose

representation is unique upto the order of the factors in the product.

n := pk1
1 pk2

2 pk3
3 · · · pkr

r , where {ki}ri=1 are positive integers and {pi}ri=1 are primes.

Q.7. Find the GCD of 33 · 52 · 7 and 23 · 32 · 5 · 72.

Since, we already have the numbers present in the form of prime factors. We can make

use of these to find the GCD of these two numbers.

We just take the intersection of the prime factors of the two numbers.

gcd(33 · 52 · 7, 23 · 32 · 5 · 72) = 2min(3,0) · 3min(3,2) · 5min(2,1) · 7min(1,2)

= 20 · 32 · 5 · 7

= 315

The GCD of the two numbers is 315 . (Ans.)

5.6 Theory of Congruences

Let n be a fixed positive integer. Two integers a and b are said to be congruent modulo n iff

n|(a− b) and is written as a ≡ b (modn).

5.6.1 Properties of Congruence

• a ≡ a (modn) (Reflexitvity)

• a ≡ b (modn) =⇒ b ≡ a (modn) (Symmetricity)

• a ≡ b (modn) ∧ b ≡ c (modn) =⇒ a ≡ c (modn) (Transitivity)
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• a ≡ b (modn) ∧ c ≡ d (modn) =⇒ a+ c ≡ b+ d (modn)

Corollary 3. a ≡ b (modn) =⇒ a+ c ≡ b+ c (modn)

• a ≡ b (modn) ∧ c ≡ d (modn) =⇒ ac ≡ bd (modn)

Corollary 4. a ≡ b (modn) =⇒ ac ≡ bc (modn)

• a ≡ b (modn) =⇒ ∀k ∈ N : ak ≡ bk (modn)

Proof.

a ≡ b(modn) =⇒ n|a− b

=⇒ n| (a− b)×
(
ak−1 + ak−2b+ · · ·+ abk−2 + bk−1

)︸ ︷︷ ︸
∈Z

=⇒ n|
(
ak − bk

)
∴ a ≡ b(modn) =⇒ ak ≡ bk(modn)

Q.8. Show that 41|240 − 1.

To show that 41|240 − 1, we must show that 240 ≡ 1 (mod 41).

Taking the remainder of 1024/41
Consider, 210 ≡ 1024 (mod 41)

∴ 210 ≡ 40 (mod 41)

∴ 210 ≡ −1 (mod 41)

∴ 220 ≡ (−1)2 (mod 41)

∴ 220 ≡ 1 (mod 41)

∴ 240 ≡ 12 (mod 41)

∴ 240 ≡ 1 (mod 41)

Thus, from the definition of the modular congruency, it follows that 41|240 − 1 (Ans.)

Q.9. Show that 97|248 − 1.

To show that 97|248 − 1, we must show that 248 ≡ 1 (mod 97).

Taking the remainder of 4096/97

Taking the remainder of 484/97

Consider, 212 ≡ 4096 (mod 97)

∴ 212 ≡ 22 (mod 97)

∴ 224 ≡ 222 (mod 97)

∴ 224 ≡ 484 (mod 97)

∴ 224 ≡ 96 (mod 97)

∴ 224 ≡ −1 (mod 97)

∴ 248 ≡ (−1)2 (mod 97)

∴ 248 ≡ 1 (mod 97)

Thus, from the definition of the modular congruency, it follows that 97|248 − 1 (Ans.)

Q.10. Show that 89|244 − 1.
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To show that 89|244 − 1, we must show that 244 ≡ 1 (mod 89).

Taking the remainder of 2048/89
Consider, 211 ≡ 2048 (mod 89)

∴ 211 ≡ 1 (mod 89)

∴ 244 ≡ 14 (mod 89)

∴ 244 ≡ 1 (mod 89)

Thus, from the definition of the modular congruency, it follows that 89|244 − 1 (Ans.)

5.6.2 Residue Classes

The residue class or congruence class of n is denoted as [n] and is congruent to the set

{0, 1, 2, . . . , |n| − 1} modulo n.

5.6.3 Solution of Linear Congruences

ax ≡ b (modn)

ax ≡ b (modn) =⇒ n|ax− b

=⇒ ax− b = ny For some y ∈ N

=⇒ ax− ny = b

Now, we must just find a solution to the above linear diophantine equation and the value of x

is our required answer.

Q.11. Solve:

(i) 25x ≡ 15 (mod 29)

We need to find the solution of the linear Diophantine Equation 25x− 29y = 15.

By Euclidean Algorithm,

29 = 1× 25 + 4

25 = 6× 4 + 1

4 = 4× 1

Therefore, gcd(25, 29) = 1.

Expressing the GCD as a linear combination of a and b.

Multiply by 15

1 = 25− 4(6)

= 25− (29− 25)(6)

∴ 1 = 25(7)− 29(6)

∴ 15 = 25(105)− 29(90)

x0 = 105 is a solution of the above equation.
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To find a solution in the complete residue class of 29. Consider,

x = x0 +
b

d
· t x ∈ J0, n− 1K ∧ t ∈ Z

= 105 +
− 29

1
· t x ∈ J0, 28K

= 105− 29t x ∈ J0, 28K

Therefore we say,

0 ≤ 105− 29t ≤ 28

∴ −105 ≤ −29t ≤ −77

∴
105

29
≥ t ≥ 77

29

∴ 2.655 ≤ t ≤ 3.620

∴ t = 3

We now substitute, t = 3 in our above equation for x.

x = 105− 29(3)

= 105− 87

∴ x = 18

We can easily verify that the 25×18 is congruent to 15 (mod 29) and that the answer

is x = 18 . (Ans.)

(ii) 6x ≡ 15 (mod 21)

We need to find the solution of the linear Diophantine Equation 6x− 21y = 15.

By Euclidean Algorithm,

21 = 3× 6 + 3

6 = 2× 3

Therefore, gcd(6, 21) = 3.

Expressing the GCD as a linear combination of a and b.

Multiply by 15
3 = 21− 6(3)

15 = 21(5)− 6(15)

15 = 6(−15)− 21(−5)

x0 = −15 is a solution of the above equation.
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To find a solution in the complete residue class of 21. Consider,

x = x0 +
b

d
· t x ∈ J0, n− 1K ∧ t ∈ Z

= −15 +
− 21

3
· t x ∈ J0, 20K

= −15− 7t x ∈ J0, 20K

Therefore we say,

0 ≤ −15− 7t ≤ 20

∴ 15 ≤ −7t ≤ 35

∴
15

−7
≥ t ≥ 35

−7
∴ −5 ≤ t ≤ −2.142

∴ t ∈ {−5,−4,−3}

We now substitute, t = −5,−4 and −3 in our above equation for x.

x = −15− 7(−5)

= −15 + 35

∴ x = 20

x = −15− 7(−4)

= −15 + 28

∴ x = 13

x = −15− 7(−3)

= −15 + 21

∴ x = 6

We can easily verify that 6 × 6, 6 × 13 and 6 × 20 are congruent to 15 (mod 21).

Thus, the answer is x ∈ {6, 13, 20} . (Ans.)

5.6.4 Chinese Remainder Theorem (CRT)

The Chinese Remainder Theorem (CRT) helps us to solve systems of linear equations of the

form

x ≡ b1 (modn1)

x ≡ b2 (modn2)

...

x ≡ br (modnr)

where ∀i, j; i ̸= j; gcd(ni, nj) = 1
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There exists a solution of the form x = b1N1x1 + b2N2x2 + · · ·+ brNrxr where

Ni =
N

ni
N = n1 × n2 × · · · × nr =

r∏
i=1

ni

and xi is the inverse of Ni (modni) i.e., Nixi ≡ 1 (modni)

which is unique modulo the integer n1n2n3 · · ·nr

Q.12. Solve the system: x ≡ 2 (mod 3), x ≡ 4 (mod 5), x ≡ 2 (mod 7).

The pairwise GCDs of 3, 5 and 7 are all 1. Thus we can apply the CRT.

There exists a solution of the form x = b1N1x1 + b2N2x2 + · · · + brNrxr. The value of

N is 3 × 5 × 7 = 105. Thus, the value of Ni are N1 = 105/3 = 35, N2 = 105/5 = 21 and

N3 = 105/7 = 15.

Now let us find the values of xi,

N1x1 ≡ 1 (modn1) N2x2 ≡ 1 (modn2) N3x3 ≡ 1 (modn3)

∴ 35x1 ≡ 1 (mod 3) ∴ 21x2 ≡ 1 (mod 5) ∴ 15x3 ≡ 1 (mod 7)

∴ x1 ≡ 2 (mod 3) ∴ x2 ≡ 1 (mod 5) ∴ x3 ≡ 1(mod 7)

Now the solution

x = b1N1x1 + b2N2x2 + b3N3x3

= (2 · 35 · 2) + (4 · 21 · 1) + (2 · 15 · 1)

= 140 + 84 + 30

x = 254

Thus, the solution of the above system of linear congruences is x = 254 (mod 105) or

x ≡ 44 (mod 105) . (Ans.)

5.6.5 System of Linear Congruences

Consider a set of linear equations,

a1x ≡ b1 (modn1)

a2x ≡ b2 (modn2)

...

arx ≡ br (modnr)

We can solve this system of linear congruency as follows,

1. First solve the independent linear congruency and find their solutions congruent modulo

their respective ni.
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2. We will receive the system of linear congruency as follows:

x ≡ B1 (modn1)

x ≡ B2 (modn2)

...

x ≡ Br (modnr)

3. Now we can make use of the CRT to evaluate this system of linear congruency.

5.6.6 Linear Congruences in Two Variables

Consider the system of linear congruency as follows:

ax+ by ≡ r (modn)

cx+ dy ≡ s (modn)

It has a unique solution if gcd(ad− bc, n) = 1.

Q.13. Find the solution of the system of linear congruences,

2x+ 3y ≡ 1 (mod 7) (1)

5x+ 9y ≡ 3 (mod 7) (2)

Since, the GCD of ad − bc = 2 × 9 − 3 × 5 = 18 − 15 = 3 and n = 7 is 1. There exists a

unique solution to this system of linear equations.

Multiplying (1) by 3: 6x+ 9y ≡ 3 (mod 7) (3)

Subtracting (2) from (3):

(6x+ 9y)− (5x+ 9y) ≡ (3− 3) (mod 7)

∴ x ≡ 0 (mod 7)

Now substituting this value in (1). Thus,

7(0) + 3y ≡ 1 (mod 7)

∴ 3y ≡ 1 (mod 7)

∴ y ≡ 5 (mod 7)

Q.14. Prove that the numbers of the sequence 1, 11, 111, 1111, . . . are not perfect squaares.

Each integer of the sequence is of the form n ≡ 3 (mod 4) i.e. n = 4k + 3 where k ∈ Z.

The relation congruent modulo 4 partitions the set of integers into the 4 equivalence classes

{n : n = 4k, k ∈ Z}, {n : n = 4k + 1, k ∈ Z}, {n : n = 4k + 2, k ∈ Z} and {n : n =

4k + 3, k ∈ Z}.
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Consider the squares of all these forms,

n2 = (4k)2 = 16k2 = 4(4k2) = 4c0 c0 ∈ Z

n2 = (4k + 1)2 = 16k2 + 8k + 1 = 4(4k2 + 2k) + 1 = 4c1 + 1 c1 ∈ Z

n2 = (4k + 2)2 = 16k2 + 16k + 4 = 4(4k2 + 4k + 1) = 4c2 c2 ∈ Z

n2 = (4k + 3)2 = 16k2 + 24k + 9 = 4(4k2 + 4k + 2) + 1 = 4c3 + 1 c3 ∈ Z

None of the squares of integers are congruent to 3 modulo 4. Hence, we can say that no

elements of the sequence are perfect squares.
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CR Cauchy-Riemann 59–64, 71

CRT Chinese Remainder Theorem 93–95

GCD Greatest Common Divisor 86, 88, 89, 91, 92, 94, 95

HCF Highest Common Factor 86

Jojo Aaditya Joil 1

LCM Least Common Multiple 86

LFT Linear Fractional Transformation 71–73

MCE Mathematics for Computer Engineers 1

NLA Numerical Linear Algebra 5

QF Quadratic Form 22, 23, 25, 26

RRG Rupak R. Gupta 1
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