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CHAPTER 1
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1.1 Introduction to Network Security

1.1.1 CIA Triad

Confidentiality–Integrity–Availability (CIA)
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1.2.2 Peer-to-Peer (P2P)

Peer-to-Peer (P2P)
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Denial of Service (DoS), Distributed Denial of Service (DDoS)
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1.4.2 HTTPS
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1.4.3 SSH

Secure Socket Shell (SSH)

1.5 Virtual Private Networks (VPN)

Virtual Private Network (VPN)

1.5.1 Tunneling Protocols

1.5.2 VPN use in P2P Contexts
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CHAPTER 2

Cryptography

2.1 Introduction to Cryptography

Cryptography is the practice of developing and using coded algorithms to protect and
obscure transmitted information so that it can only be read by those with permission and
the ability to decrypt it.[1] Put differently, cryptography obscures communications so that
unauthorized parties cannot access them.

In practice, cryptography is used mainly to transform messages into an unreadable format
(known as ciphertext [1]) that can only be decrypted into a readable format (known as
plaintext [1]) by the intended authorized recipient using a specific secret key.

The idea behind cryptography has coalesced around four main principles.

1. Confidentiality: Encrypted information can only be accessed by the person for whom
it is intended and no one else.[1]

2. Integrity: Encrypted information cannot be modified in storage or in transit between
the sender and the intended receiver without any alterations being detected.[1]

3. Non-repudiation: The creator or sender of encrypted information cannot deny their
intention to send the information.[1]

4. Authentication: The identities of the sender and receiver, as well as the origin and
destination of the information, are confirmed.[1]

2.2 Types of Cryptography

There are two main types of encryption that are in use today: symmetric cryptography and
asymmetric cryptography. There are also hybrid cryptosystems that combine both.
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2.2.1 Symmetric-Key Cryptography

Symmetric-key cryptography uses a shared single key for both encryption and decryption.
Both the sender and receiver of an encrypted message will have access to the same secret
key.[1] Algorithms such as Advanced Encryption Standard (AES) and Data Encryption
Standard (DES) are symmetric systems.

Some main attributes of symmetric encryption include:

• Speed: The encryption process is comparatively fast.[1]

• Efficiency: Single-key encryption is well suited for large amounts of data and requires
fewer resources.[1]

• Confidential: Symmetric encryption effectively secures data and prevents anyone
without the key from decrypting the information.[1]

Sender Encrypt LOCK Ciphertext Decrypt UNLOCK Receiver

Shared Key Key Shared Key Key

Figure 2.1: Symmetric Cryptosystem

2.2.2 Asymmetric-Key Cryptography

Asymmetric-key cryptography (also referred to as public-key cryptography) uses one
private key and one public key. Data that are encrypted with a public and private keys require
both the public key and the recipient’s private key to be decrypted.[1]

Public-key cryptography enables secure key exchange over an insecure medium without the
need to share a secret decryption key because the public key is only used in the encryption,
but not the decryption process.[1] Asymmetric encryption adds another layer of security
because an individual’s private key is never shared. Rivest–Shamir–Adleman (RSA) is one of
the most common public key encryption algorithms.

Some main attributes of asymmetric encryption include:

• Security: Asymmetric encryption is considered more secure.[1]

• Robust: Public-key cryptography offers more benefits, providing confidentiality, au-
thenticity and non-repudiation.[1]

• Resource intensive: Unlike single key encryption, asymmetric encryption is slow and
requires greater resources, which can be prohibitively expensive in some cases.[1]

Sender Encrypt LOCK Ciphertext Decrypt UNLOCK Receiver

Receiver’s Public Key Key Receiver’s Private Key Key

Figure 2.2: Asymmetric Cryptosystem
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2.2.3 Properties of a Secure Cipher

In cryptography, confusion and diffusion are two properties of the operation of a secure
cipher.[2] Both of these properties are needed to prevent the deduction of the secret by
applying statistics or other forms of cryptanalysis.[2]

Confusion

Confusion refers to the idea of obscuring the relationship between the encryption key and
the ciphertext.[2] Confusion is achieved when each resultant bit of the cipher depends upon
many bits of the key.[2]

Diffusion

Diffusion refers to the idea of information of the plaintext being evenly spread across the
ciphertext. This disallows the occurrence of statistical text patterns in the cipher, which
could otherwise be used to deduce information.[2]

2.3 Key Exchange Mechanisms

Before moving onto encryption algorithms, we must first understand how shared secrets
are established between the sender and the recipient over a public (insecure) channel. The
commonly used key exchange mechanism is Diffie–Hellman.

2.3.1 Diffie–Hellman

Diffie–Hellman key exchange is a mathematical method for securely exchanging cryptographic
keys over an insecure channel. It was developed by Whitfield Diffie and Martin Hellman in
1976.

Suppose Alice and Bob want to exchange a cryptographic key with each other. The algorithm
works as follows:[3]

• Alice and Bob agree on a large prime number p and a generator g which is a primitive
root1 modulo p.

• Alice chooses a secret integer a and sends Bob A := ga mod p.

• Bob chooses a secret integer b and sends Alice B := gb mod p.

• Alice computes Ab mod p = (ga)b mod p = gab mod p.

• Bob computes Ba mod p = (gb)a mod p = gab mod p.

The result of the equations is their shared secret K := gab mod p which can be used as an
encryption key. The protocol is illustrated in fig. 2.3.

1An integer g is a primitive root modulo n if for every integer a relatively prime to n there exists an integer
z such that a ≡ gz (mod n).
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Alice Bob

Private a Private b

Send A = ga mod p Send B = gb mod p

Compute K = Ba mod p Compute K = Ab mod p

Shared Secret K Shared Secret K

A

B

Figure 2.3: Diffie–Hellman key exchange

Why Diffie–Hellman is secure

Diffie–Hellman is secure because it relies on the difficulty of the discrete logarithm problem,[4]

i.e., for known values of g, p and A, it is difficult2 to obtain the exponent a that satisfies
ga ≡ A (mod p), without additional information.[4]

The above algorithm can be summarised as follows:

Algorithm 1: Diffie–Hellman Key Exchange
Input: Public parameters: prime p, generator g
Output: Shared secret key K

Alice: Choose secret a ∈ { 1, . . . ,p− 1 }
Compute A← ga mod p

Send A to Bob
Bob: Choose secret b ∈ { 1, . . . ,p− 1 }
Compute B← gb mod p

Send B to Alice
Alice: Compute KA ← Ba mod p

Bob: Compute KB ← Ab mod p

return K = KA = KB

2.4 Symmetric Encryption Algorithms

In symmetric encryption, both the sender and recipient use the same shared key, which
is usually established using Diffie–Hellman (§2.3.1). There are two types of symmetric
encryption algorithms: Block ciphers and stream ciphers.

Block cipher Data is encrypted and decrypted in fixed-size blocks. If a message is larger
2Here, “difficult” means having no known polynomial time solution.
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than the block size, it is divided into sequential blocks and processed one at a time.[5]

Stream cipher Data is encrypted bit by bit or byte by byte, designed for real-time encryption
and transmission of data streams.[5]

2.4.1 One-time pad (OTP)

One-time pad (OTP) is a simple symmetric stream cipher encryption technique. It requires
the use of a single-use, pre-shared key K that is larger than3 or equal to the size of the
message M being sent.

The algorithm works by using a binary representation of the message M and key K. We use
the binary XOR (⊕) operation to generate our ciphertext C.

Key generation

Suppose the message M is a bitstring of length n. OTP is provably unbreakable if the
generated key meets the following conditions:

• The key must be truly random and must be generated by a non-deterministic,
non-repeatable process. If the key is generated by an algorithm, it will not work.

• The key must never be reused. Use of the same key to encrypt different messages,
no matter how trivially small, compromises the cipher.

• The key must be kept completely secret by the communicating parties.

Algorithm 2: OTP Key Generation
Input: Message M of length n

Output: Key K of length n

Generate a truly random bitstring K of length n

return K

Encryption

Suppose the message M and key K have the same length of n bits. The ciphertext C will
also be of n bits and it is given as follows:

∀i ∈ J1,nK, Ci = Mi ⊕ Ki

E.g. consider M := 1011001001 and K := 0010110101. C is given by M⊕ K.

1011001001
⊕ 0010110101

1001111100 → C

3If the key K is longer than the message M, then random bits may be appended at the end of M to match
the length.
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Algorithm 3: OTP Encryption
Input: Message M, key K

Output: Ciphertext C
for i← 1 to n do

Ci ←Mi ⊕ Ki

return C

Decryption

OTP is what is called a reciprocal cipher, i.e., the same transformation is used to decrypt
the message as the one used to encrypt it. Therefore,

∀i ∈ J1,nK, Mi = Ci ⊕ Ki

E.g. consider the previous key K = 0010110101 and the obtained ciphertext C =

1001111100.

1001111100
⊕ 0010110101

1011001001 →M

Algorithm 4: OTP Decryption
Input: Ciphertext C, key K

Output: Decrypted message M

for i← 1 to n do
Mi ← Ci ⊕ Ki

return M

The reciprocal cipher works because C⊕ K = (M⊕ K)⊕ K = M.

2.4.2 Advanced Encryption Standard (AES)

The Rijndael cipher, or the AES, is a symmetric block cipher algorithm that uses 128, 192
or 256-bit keys to transform a message block of 128 bits into 128 bits of ciphertext.

A few terminologies need to be defined to understand AES.

State

The encryption algorithm inputs 128-bit (16 bytes) blocks of the plaintext. These 16 bytes
are represented as a 4× 4 matrix called a state.

E.g. consider a plaintext P represented as a string of bytes,

P := s15s14s13s12s11s10s9s8s7s6s5s4s3s2s1s0
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where si ∈ { 0, 1 }8 ∀i ∈ J0, 15K. Its corresponding state matrix is given as shown in fig. 2.4.

s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

or

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

Figure 2.4: AES state matrix

Key expansion

The AES algorithm applies Nr rounds of transformations to the plaintext during encryption,
where Nr is a number determined by the size of the key K. Depending on the size of the
key, there are three different variations of AES, as shown in table 2.1.

AES variation Size of key K Number of rounds (Nr)

AES-128 128 bits (16 bytes) 10
AES-192 192 bits (24 bytes) 12
AES-256 256 bits (32 bytes) 14

Table 2.1: AES variations

The number of four-word (128 bits) blocks in the key, Nk is obtained by dividing the key
size by 32 (i.e., Nk := Key size÷ 32). The number of rounds Nr is obtained by the formula
Nr := Nk + 64.

Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet, gravida ut, risus. Aenean
ac enim. In luctus. Phasellus eu quam vitae turpis viverra pellentesque. Duis feugiat felis ut
enim. Phasellus pharetra, sem id porttitor sodales, magna nunc aliquet nibh, nec blandit nisl
mauris at pede. Suspendisse risus risus, lobortis eget, semper at, imperdiet sit amet, quam.
Quisque scelerisque dapibus nibh. Nam enim. Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Nunc ut metus. Ut metus justo, auctor at, ultrices eu, sagittis ut, purus.
Aliquam aliquam.

Transformations

There are four transformations applied in AES:
4The +6 is a design constant chosen by the AES designers. It is derived from empirical cryptanalysis as

opposed to a mathematical formula.
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1. Substitute Bytes: Each byte sij in the state matrix is with a SubByte s ′ij := S(sij)

from a lookup table, using an 8-bit substitution box. This S-box used is derived from
the multiplicative inverses over the Galois field5 GF(28), or F256. This done to remove
bit-level similarities inside each byte.

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

Input State

s2,2

s ′0,0 s ′0,1 s ′0,2 s ′0,3

s ′1,0 s ′1,1 s ′1,2 s ′1,3

s ′2,0 s ′2,1 s ′2,2 s ′2,3

s ′3,0 s ′3,1 s ′3,2 s ′3,3

Output State

s ′2,2

S

Figure 2.5: SubBytes

The inverse substitution applied during decryption is denoted as InvSubBytes.

2. Shift Rows: Here, the rows of the state are cyclically permuted6 according to the
following rule:

• The first row is unchanged
(
s0,j 7→ s0,j

)
.

• The second row is shifted one position to the left
(
s1,j 7→ s1,(j−1) mod 4

)
.

• The third row is shifted two positions to the left
(
s2,j 7→ s2,(j−2) mod 4

)
.

• The fourth row is shifted three positions to the left
(
s3,j 7→ s3,(j−3) mod 4

)
.

The inverse row shift applied during decryption is denoted as InvShiftRows.

3. Mix Columns: The four bytes of each column of a state are combined using an
invertible linear transformation7 with a fixed matrix.

E.g., a column vector sj is transformed to the vector s ′j using a transformation illustrated
in eq. (2.1). 

s ′0,j
s ′1,j
s ′2,j
s ′3,j

 :=


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2



s0,j

s1,j

s2,j

s3,j

 (2.1)

Since the state bytes are in GF(28), this transformation is done modulo a polynomial
1 + x4. However, this shit is going over my head as well so I will leave this as an
exercise to the reader.

5A Galois field (GF) is a field with a finite number of elements. A finite field Fn equals a ring Zn when n

is prime.
6Cyclic permutation refers to the arrangement of a set of objects around a fixed circle. Here, we use

modular arithmetic to emulate a circular shift.
7Symbolically, a linear transformation refers to the multiplication of a matrix T with a vector x to produce

another vector y. It is said to be invertible iff there exists another matrix T−1 s.t. x = T−1y.

Page 14 of 30



MixColumns is used to add diffusion to the cipher. Unlike the other three transfor-
mations, MixColumns is dropped in the last round to provide a symmetric structure
to the algorithm, else an additional inverse transformation (InvMixColumns) would
be needed during decryption.

4. Add Round Key: Lorem ipsum

Encryption

During encryption, the transformations SubBytes, ShiftRows, MixColumns and addi-
tion of the round key are all performed sequentially on the state matrix for each round except
the last one. In the last round, all transformations except MixColumns are performed in
the same sequence.

Algorithm 5: AES Encryption
Input: Plaintext block P, cipher key K

Output: Ciphertext block C

Expand key K into round keys K0,K1, . . . ,KNr

S← P

S← S⊕ K0

for r← 1 to Nr − 1 do
S← SubBytes(S)
S← ShiftRows(S)
S←MixColumns(S)
S← S⊕ Kr

S← SubBytes(S)
S← ShiftRows(S)
S← S⊕ KNr

return C← S

Decryption

During decryption, the final round key is added followed by the inverse transformations
InvShiftRows and InvSubBytes to the cipher for the first round. For the subsequent
rounds, addition of the round key, InvMixColumns, InvShiftRows and InvSubBytes
are performed sequentially.

Page 15 of 30



Algorithm 6: AES Decryption
Input: Ciphertext block C, cipher key K

Output: Plaintext block P

Expand key K into round keys K0,K1, . . . ,KNr

S← C

S← S⊕ KNr

S← InvShiftRows(S)
S← InvSubBytes(S)
for r← Nr − 1 to 1 do

S← S⊕ Kr

S← InvMixColumns(S)
S← InvShiftRows(S)
S← InvSubBytes(S)

S← S⊕ K0

return P ← S

Initialization vector

Initialization vector (IV)Nulla ac nisl. Nullam urna nulla, ullamcorper in, interdum sit amet,
gravida ut, risus. Aenean ac enim. In luctus. Phasellus eu quam vitae turpis viverra
pellentesque. Duis feugiat felis ut enim. Phasellus pharetra, sem id porttitor sodales, magna
nunc aliquet nibh, nec blandit nisl mauris at pede. Suspendisse risus risus, lobortis eget,
semper at, imperdiet sit amet, quam. Quisque scelerisque dapibus nibh. Nam enim. Lorem
ipsum dolor sit amet, consectetuer adipiscing elit. Nunc ut metus. Ut metus justo, auctor at,
ultrices eu, sagittis ut, purus. Aliquam aliquam.

2.5 Asymmetric Encryption Algorithms

Asymmetric encryption algorithms use a pair of keys: a public key for encryption and a
private key for decryption. The most important asymmetric cryptosystems are RSA and ECC.

2.5.1 Rivest–Shamir–Adleman (RSA)

RSA is an asymmetric encryption algorithm devised by the three scientists Rivest, Shamir
and Adleman. It is one of the most common algorithms used in modern cryptography.

Idea behind RSA

RSA relies on the difficulty of the integer factorization problem, i.e., it is difficult to factorize
a large integer into a product of its factors on a classical (non-quantum) computer.

An algorithm that efficiently factors an arbitrary integer would render RSA-based public-key
cryptography insecure.
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Key generation

We first choose two arbitrary large prime numbers p and q. We obtain a semiprime modulus
n as the product of p and q. All of our operations will be performed modulo n, i.e., in the
ring Zn.

n = p× q

We obtain the totient8 of n via Euler’s totient function ϕ, i.e. ϕ(n).

Now, the encryption exponent e is chosen such that 1 < e < ϕ(n) and it is relatively
prime to the totient ϕ(n).

The decryption exponent d is obtained as the modular inverse of e modulo ϕ(n), i.e.

d ≡ e−1 (mod ϕ(n))

The public key is denoted as the tuple (n, e)9 and the private key is the decryption exponent
d.

The above algorithm can be summarized as follows:

Algorithm 7: RSA Key Generation
Input: Two large prime numbers p, q
Output: Public key (e,n) and private key d

n← p · q
ϕ← (p− 1)(q− 1)
Choose e such that 1 < e < ϕ and gcd(e,ϕ) = 1
d←ModInverse(e,ϕ)

return (n, e), d

Key distribution

For a sender to securely send a message to a recipient, the sender must know the recipient’s
public key to encrypt the message, and the recipient must use its private key to decrypt the
message.

To enable the sender to send its encrypted messages, the recipient transmits its public key
(n, e) to the sender through a reliable but not necessarily secret route. The private key is
never transmitted.

The above protocol is illustrated in fig. 2.6.
8The totient of a positive integer n is the number of integers between 1 and n relatively prime to n.
9Some authors may denote the public key as (e,n), but that has no practical impact on the algorithm.
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Recipient transmits public key (n, e)

Sender encrypts the message M

Sender sends ciphertext C to the recipient

Recipient decrypts the ciphertext C using the private key d

Figure 2.6: RSA key distribution

Encryption

A message M (where M ∈ Z) can be converted to a ciphertext C ∈ Zn by raising M to the
encryption exponent e modulo n.

C ≡Me (mod n)

Algorithm 8: RSA Encryption
Input: Message M, public key (e,n)
Output: Ciphertext C
C←Me mod n

return C

Since most messages are text, typically ASCII or Unicode encoding is used to convert text to
a corresponding numeric form before encryption by the sender.

Decryption

At the recipient, the private key d is used to decipher the received ciphertext C. The original
message is recovered by raising C to the decryption exponent d.

The reason this works is that the decryption exponent d is the modular inverse of the
encryption exponent e. Therefore,

e× d ≡ 1 (mod ϕ(n))

=⇒ e× d = kϕ(n) + 1 for some k ∈ Z (2.2)

Consider the following cases:
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Case 1 gcd(M,n) = 1. Then, by Euler’s theorem10,

Mϕ(n) ≡ 1 (mod n)

=⇒ Mkϕ(n) ≡ 1k ≡ 1 (mod n)

=⇒ Mkϕ(n)+1 ≡M (mod n)

∴ Me×d ≡M (mod n) (From eq. (2.2))

=⇒ (Me)d ≡ Cd ≡M (mod n)

Case 2 gcd(M,n) 6= 1. This implies that M ≡ 0 (mod p) or M ≡ 0 (mod q).

Without loss of generality, assume M ≡ 0 (mod p). So by the Chinese remainder
theorem11,

Me×d ≡ Cd ≡M (mod n)

The proof of the above result is left as an exercise to the reader.

Algorithm 9: RSA Decryption
Input: Ciphertext C, private key (n,d), modulus n

Output: Decrypted message M

M← Cd mod n

return M

After decryption, the message M is typically converted back to text using the encoding
method used by the sender.

2.5.2 Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (ECC)

A

B

A+ B

x

y

(a) Point Addition

G

2G

x

y

(b) Point Doubling

Figure 2.7: The elliptic curve y2 = x3 + ax+ b

10If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n).
11If gcd(n1,n2) = 1, then the system x ≡ a1 (mod n1) and x ≡ a2 (mod n2) has a unique solution

modulo n1n2, where a1,a2 ∈ Z.
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Algorithm 10: ECC Key Generation
Input: Elliptic curve E over field Fq, base point G, order n
Output: Public-private key pair (d,Q)

Choose random integer d ∈ J1,n− 1K
Compute public key Q← d ·G
return Private key d, public key Q

Algorithm 11: ECC Encryption (ElGamal-style)
Input: Message M, recipient’s public key Q, curve E, base point G
Output: Ciphertext pair (C1,C2)

Encode M as a point PM on E

Choose random integer k ∈ J1,n− 1K
C1 ← k ·G
C2 ← PM + k ·Q
return (C1,C2)

Algorithm 12: ECC Decryption
Input: Ciphertext (C1,C2), private key d

Output: Recovered message M

Compute PM ← C2 − d · C1

Decode point PM to get message M

return M

2.6 Hash Functions

2.7 Hashing Techniques

2.7.1 Message-Digest (MD)

Message-Digest (MD)

2.7.2 Secure Hashing Algorithm (SHA)

Secure Hashing Algorithm (SHA)

2.8 Digital Signatures

2.8.1 RSA and DSA signatures

Digital Signature Algorithm (DSA)

2.8.2 ECDSA

Elliptic Curve Digital Signature Algorithm (ECDSA)
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2.9 Post-Quantum Cryptography (PQC)

Post-Quantum Cryptography (PQC)

2.9.1 Quantum Threat Model

2.10 Cipher Suites

2.10.1 Role of Cipher Suites

2.10.2 Components of Cipher Suites

2.10.3 Supported Cipher Suites
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CHAPTER 3

Blockchain

3.1 Introduction to Blockchain

3.2 Architecture of Blockchain

3.2.1 Block Structure

3.2.2 Hashing and Merkle Trees

3.2.3 Chaining Mechanism

3.3 Consensus Mechanisms

3.3.1 Proof-of-Work

Proof-of-Work (PoW)

3.3.2 Proof-of-Stake

3.3.3 Other Variants (DPoS, PoA)

3.4 Transactions and Wallets

3.4.1 Transaction Format

Unspent Transaction Output (UTXO)
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3.4.2 Digital Signatures and Validation

3.4.3 Wallet Types

3.5 Mining and Network Participation

3.6 Smart Contracts

3.6.1 Definition

3.6.2 Ethereum and Solidity

3.7 Blockchain Applications

3.7.1 Cryptocurrencies

3.7.2 Supply Chain, Voting, Identity

3.7.3 Decentralized Finance (DeFi)

Decentralized Finance (DeFi)
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APPENDIX A

Quantum Computing

A.1 Introduction to Quantum Computing

A.1.1 Why Quantum Computing

A.1.2 Classical vs Quantum Computation

A.2 Quantum Bits (Qubits)

A.2.1 Superposition

A.2.2 Measurement

A.2.3 Entanglement

A.2.4 Bra-Ket Notation

〈a|1〉

Ket Vectors

Bra Vectors

A.3 Quantum Gates and Circuits

A.3.1 Basic Gates

X,Z,H

A.3.2 Two-Qubit Gates

CNOT
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A.3.3 Quantum Circuits and Reversibility

A.4 Quantum Algorithms

A.4.1 Deutsch–Jozsa Algorithm

A.4.2 Grover’s Search Algorithm

A.4.3 Shor’s Factoring Algorithm
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The End.


	Contents
	Network Security
	Introduction to Network Security
	CIA Triad

	Network Models
	Client-Server
	Peer-to-Peer (P2P)

	Network Attacks
	Passive and Active Attacks
	Eavesdropping
	Spoofing
	Man-in-the-Middle
	Denial of Service

	Security Protocols
	TLS/SSL
	HTTPS
	SSH

	Virtual Private Networks (VPN)
	Tunneling Protocols
	VPN use in P2P Contexts


	Cryptography
	Introduction to Cryptography
	Types of Cryptography
	Symmetric-Key Cryptography
	Asymmetric-Key Cryptography
	Properties of a Secure Cipher

	Key Exchange Mechanisms
	Diffie–Hellman

	Symmetric Encryption Algorithms
	One-time pad (OTP)
	Advanced Encryption Standard (AES)

	Asymmetric Encryption Algorithms
	Rivest–Shamir–Adleman (RSA)
	Elliptic Curve Cryptography (ECC)

	Hash Functions
	Hashing Techniques
	Message-Digest (MD)
	Secure Hashing Algorithm (SHA)

	Digital Signatures
	RSA and DSA signatures
	ECDSA

	Post-Quantum Cryptography (PQC)
	Quantum Threat Model

	Cipher Suites
	Role of Cipher Suites
	Components of Cipher Suites
	Supported Cipher Suites


	Blockchain
	Introduction to Blockchain
	Architecture of Blockchain
	Block Structure
	Hashing and Merkle Trees
	Chaining Mechanism

	Consensus Mechanisms
	Proof-of-Work
	Proof-of-Stake
	Other Variants (DPoS, PoA)

	Transactions and Wallets
	Transaction Format
	Digital Signatures and Validation
	Wallet Types

	Mining and Network Participation
	Smart Contracts
	Definition
	Ethereum and Solidity

	Blockchain Applications
	Cryptocurrencies
	Supply Chain, Voting, Identity
	Decentralized Finance (DeFi)


	Quantum Computing
	Introduction to Quantum Computing
	Why Quantum Computing
	Classical vs Quantum Computation

	Quantum Bits (Qubits)
	Superposition
	Measurement
	Entanglement
	Bra-Ket Notation

	Quantum Gates and Circuits
	Basic Gates
	Two-Qubit Gates
	Quantum Circuits and Reversibility

	Quantum Algorithms
	Deutsch–Jozsa Algorithm
	Grover’s Search Algorithm
	Shor’s Factoring Algorithm


	List of Algorithms
	Glossary
	References

