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Chapter 1
Introduction to Analysis of Algorithms

1.1 Algorithms

Informally, an algorithm is any well-defined computational procedure that solves a problem.

Every algorithm must satisfy the following properties:

Definiteness Every step in an algorithm must be clear and unambiguous.

Finiteness Every algorithm must produce a result within a finite number of steps.

Effectiveness Every instruction must be executed in a finite amount of time.

Input and Output Every algorithm must take zero or more number of inputs and must pro-
duce at least one output as result.

Correctness The proposed algorithm should produce correct and unambiguous results.

1.2 Performance of an Algorithm

The performance of an algorithm can be measured by the metrics of time and space complexities.

1.2.1 Time Complexity

The time complexity is the computational complexity that describes the amount of computer
time it takes to run an algorithm. It is calculated by assuming that each elementary operation
takes a constant amount of time and finding out the total number of elementary operations. It
is usually stated as a function of the size (n) of the input.

1.2.2 Space Complexity

The space complexity of an algorithm or a data structure is the amount of computer memory
required to solve an instance of the computational problem. It is the memory required by an
algorithm until it executes completely and contains the input space as well as the auxiliary space.
Like time complexity it also is represented as a function of the size (n) of the input.
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1.3 Asymptotic Notations

The time and space complexity varies drastically from one algorithm to another, even varying
for the same algorithm with different inputs. So we represent the functions in terms of the rate
at which they grow. This representation is known as asymptotic notation1.

1.3.1 O-Notation

O(g(n)) := {f(n) | ∃ c > 0 ∃ n0 > 0 ∀ n ≥ n0 : 0 ≤ f(n) ≤ cg(n)} (1.1)

It provides an asymptotic upper bound on the rate of growth of a function. If a function f(n)

is O(g(n)) it means that f(n) grows at a rate that is at most as fast as g(n) as n→∞.

Q.1. Find the O-notation for f(n) := 6n3 + n2 + 3n+ 3.

f(n) := 6n3 + n2 + 3n+ 3

6n3 + n2 + 3n+ 3 ≤ 6n3 + n2 + 3n+ n ∀ n ≥ 3

≤ 6n3 + n2 + 4n

6n3 + n2 + 4n ≤ 6n3 + n2 + n2 ∀ n ≥ 4

≤ 6n3 + 2n2

6n3 + 2n2 ≤ 6n3 + n3 ∀ n (n3 ≥ 2n2) or ∀ n ≥ 2

≤ 7n3

∴ f(n) ≤ 7n3 (∵ (a ≤ b) ∧ (b ≤ c) =⇒ (a ≤ c))

Thus, for all n ≥ 2, f(n) ≤ cn3, with c = 7 . Thus, f(n) ∈ O
(
n3

)
. (Ans.)

o-Notation

o(g(n)) := {f(n) | ∀ c > 0 ∃ n0 > 0 ∀ n ≥ n0 : 0 ≤ f(n) < cg(n)} (1.2)

o-notation is defined in a similar way to O-notation, but it provides a stricter upper bound
for the asymptotic growth of a function. If a function f(n) is o(g(n)) it means that f(n) is
guaranteed to grow at a lesser rate as compared to g(n) as n → ∞. The following equation
holds true if f(n) ∈ o(g(n)):

lim
n→∞

f(n)

g(n)
= 0

1.3.2 Ω-Notation

Ω(g(n)) := {f(n) | ∃ c > 0 ∃ n0 > 0 ∀ n ≥ n0 : 0 ≤ cg(n) ≤ f(n)} (1.3)

It provides an asymptotic lower bound for the rate of growth of a function. If a function f(n) is
defined Ω(g(n)) it means that f(n) grows at a rate that is at least as slow as g(n) as n→∞.

Q.2. Find out Ω-notation for the function 4n3 + 2n+ 8.

If given f(n) is Ω(g(n)) then: c · g(n) ≤ f(n).
1We use this term because we evaluate the rate of growth as n → ∞.
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Let c = 4 and g(n) = n3

∴ c · g(n) ≤ f(n)

∴ 4n3 ≤ 4n3 + 2n+ 8

∴ 0 ≤ 2n+ 8

which is true ∀n(n ≥ 0). Thus, f(n) ∈ Ω
(
n3

)
. (Ans.)

Q.3. Find the Ω-notation for f(n) := 4 · 2n + 3n.

If given f(n) is Ω(g(n)) then: c · g(n) ≤ f(n).

Let c ∈ (0, 4] and g(n) = 2n.

∴ c · g(n) ≤ f(n)

∴ c · 2n ≤ 4 · 2n + 3n

∴ (c− 4)2n ≤ 3n

which is true ∀n(n ≥ 0). Thus, f(n) ∈ Ω(2n) . (Ans.)

ω-Notation

ω(g(n)) := {f(n) | ∀ c > 0 ∃ n0 > 0 ∀ n ≥ n0 : 0 ≤ cg(n) < f(n)} (1.4)

ω-notation is defined in a similar way to Ω-notation, but it provides a stricter lower bound for the
asymptotic growth of a function. If a function f(n) is ω(g(n)) it means that f(n) is guaranteed
to grow at a greater rate as compared to g(n) as n → ∞. The following equation holds true if
f(n) ∈ ω(g(n)):

lim
n→∞

f(n)

g(n)
=∞

It is important to note that o and ω are complementary in nature:

φ(n) ∈ o(ψ(n)) ⇐⇒ ψ(n) ∈ ω(φ(n)) (1.5)

1.3.3 Θ-Notation

Θ(g(n)) := {f(n) | ∃ c1, c2 > 0 ∃ n0 > 0 ∀ n ≥ n0 : 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)} (1.6)

It provides asymptotic upper and lower bounds for the rate for growth of a function. If a function
f(n) is defined Θ(g(n)) it means that f(n) grows at a rate that is at most as fast as AND at
least as slow as g(n) as n→∞.

Another definition for Θ-notation is as follows:

Θ(g(n)) := {f(n) | f(n) ∈ O(g(n)) ∧ f(n) ∈ Ω(g(n))} = O(g(n)) ∩ Ω(g(n)) (1.7)

Q.4. Find Θ-notation for f(n) := 27n2 + 16n.

If a function f(n) is defined as Θ(g(n)) then: c1 · g(n) ≤ f(n) ≤ c2 · g(n).
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Let c1 ∈ (0, 27], c2 > 27 and g(n) = n2

∴ c1 · g(n) ≤ f(n) ≤ c2 · g(n)

∴ c1 · n2 ≤ 27n2 + 16n ≤ c2 · n2

∴ (c1 − 27)n2 ≤ 16n ≤ (c2 − 27)n2

The first inequality (c1 − 27)n2 ≤ 16n holds true ∀ n ≥ 0.
The second inequality 16n ≤ (c2 − 27)n2 can be further evaluated as follows:

∴ 16n ≤ (c2 − 27)n2

∴ n((c2 − 27)n− 16) ≥ 0

∴ n ∈
[

16

c2 − 27
,∞

)

Thus, for c1 ∈ (0, 27] , c2 > 27, n0 >
16

c2 − 27
and g(n) = n2, f(n) ∈ Θ

(
n2

)
. (Ans.)

Q.5. Find Θ-notation for f(n) := 5n3 + n2 + 3n+ 2.

If a function f(n) is defined as Θ(g(n)) then: c1 · g(n) ≤ f(n) ≤ c2 · g(n).

Let us find the value of g(n) for the first inequality c1 · g(n) ≤ f(n). Let c1 ∈ (0, 5] and
g(n) = n3.

∴ c1 · g(n) ≤ f(n)

∴ c1 · n3 ≤ 5n3 + n2 + 3n+ 2

∴ (c1 − 5)n3 ≤ n2 + 3n+ 2

which is true ∀ n ≥ 0. Thus, f(n) ∈ Ω
(
n3

)
.

Now let us find the value for g(n) for the second inequality f(n) ≤ c2 · g(n).

5n3 + n2 + 3n+ 2 ≤ 5n3 + n2 + 3n+ n ∀n(n ≥ 2)

≤ 5n3 + n2 + 4n

5n3 + n2 + 4n ≤ 5n3 + n2 + n2 ∀n(n ≥ 4)

≤ 5n3 + 2n2

5n3 + 2n2 ≤ 5n3 + n3 ∀n(n3 ≥ 2n2) =⇒ ∀n(n ≥ 2)

≤ 6n3

∴ f(n) ≤ 6n3 (∵ (a < b) ∧ (b < c) =⇒ (a < c))

Thus, for all n > 2, f(n) < cn3, with c = 6. Thus, f(n) ∈ O
(
n3

)
.

Since f(n) ∈ Ω
(
n3

)
and f(n) ∈ O

(
n3

)
, f(n) ∈ Θ

(
n3

)
. (Ans.)

1.4 Solving Recurrences

Recurrence relations are relations of an indexed variable which involve the presence of the same
variable but with a lesser index. The elements of such a relation form sequences, conversely a
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recurrence relation may also be used to denote a sequence.

A recurrence relation of an indexed variable ak is defined as follows: ak :=

f(ai) k > i > k0

c0 k = k0

There are various different methods to solving a recurrence relation, ket us have a look at some
of them.

1.4.1 Substitution Method

The first method of solving a recurrence relation is to constantly substitute the “lesser” version
of the variable recursively until we reach the base case.

e.g. Suppose we have been given a recurrence relation as follows:

ak =

3ak−1 + 1 ∀k > 1

2 k = 1

To solve this recurrence relation, we first write the relation: ak = 3ak−1 + 1.
Now upon constant backtracking of the ak−1 term:

Noticing a pattern

ak = 3ak−1 + 1

= 3(3ak−2 + 1) + 1 = 9ak−2 + 1 + 3

= 9(3ak−3 + 1) + 1 + 3 = 27ak−3 + 1 + 3 + 9

ak = 3iak−i +
∑i

r=1 3
r−1

We need to perform this operation until we reach the base case, i.e., the term a1 appears in
the above equation, this occurs when the value of k − i = 1 =⇒ i = k − 1.

k-1 terms in the sum

ak = 3k−1a1 +
∑k−1

r=1 3
r−1

= 3k−12 + (1 + 3 + 32 + · · ·+ 3k−2)

= 3k−12 + 1 ·
3k−1 − 1

3− 1

ak = 3k−12 +
3k−1 − 1

2

The recurrence relation equates out to ak = 3k−12 +
3k−1 − 1

2
. (Ans.)

e.g. Suppose we have been given a recurrence relation as follows:

ak =

ak/2/2 k = 2n > 1

1 k = 1

To solve this recurrence relation, we first write the relation: ak = ak/2/2.
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Now upon constant backtracking of the ak/2 term:

Noticing a pattern

ak = ak/2/2

= ak/4/4

= ak/8/8

ak = ak/2i/2
i

We need to perform this operation until we reach the base case, i.e., the term a1 appears in
the above equation, this occurs when the value of k/2i = 1 =⇒ i = lg k.

ak = a1/2
lg k

= a1/k

= 1/k

The recurrence relation equates out to ak = 1/k . (Ans.)

1.4.2 Recursion Tree

Consider the following recurrence relation; T (n) =

aT (n/b) + f(n) n > 1

1 n = 1

T (n)

T (n/b)

T (n/b2)

T (1) T (1)

T (n/b2)

· · ·

· · ·

· · ·

· · ·

T (n/b)

T (n/b2)

· · ·

T (n/b2)

T (1) T (1)

Level 0: T (n)

Level 1: aT (n/b) + f(n)

Level 2: a2T (n/b2) + f(n) + af(n/b)

Level k: akT (1) +
∑k−1

i=0 a
if(n/bi)

where k = logb n, this is derived from the fact that at the kth level, the value of n/bk becomes 1.

1.4.3 Master’s Theorem

From the above recursion tree, it follows that:

T (n) = nlogb a · T (1) +
logb n−1∑

i=0

aif
( n
bi

)
(1.8)

Depending on the value of a, b and f(n), a few results have been already derived. They are as
follows:
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T (n) ∈


Θ(nlogb a) f(n) ∈ O(nlogb(a)−ε)

Θ(nlogb a logk+1
b n) f(n) ∈ Θ(nlogb(a) logkb n)

Θ(f(n)) f(n) ∈ Ω(nlogb(a)+ε) ∧ creg

where creg is the regularity condition given as af(n/b) ≤ cf(n); where c < 1

Derivation of Master’s Theorem: Case 1

From eq. (1.8), T (n) = nlogb a +
∑logb n−1

i=0 aif(n/bi)

∵ f(n) ∈ O(nlogb(a)−ε)

∴
logb n−1∑

i=0

aif(n/bi) ≤ c1
logb n−1∑

i=0

ai(n/bi)logb a−ε

≤ c1nlogb(a)−ε

logb n−1∑
i=0

ai

bi(logb(a)−ε)

≤ c1nlogb(a)−ε

logb n−1∑
i=0

aibiε

(blogb(a))i

≤ c1nlogb(a)−ε

logb n−1∑
i=0

aibiε

ai

≤ c1nlogb(a)−ε

logb n−1∑
i=0

biε

≤ c1nlogb(a)−ε ·
bε(logb n) − 1

bε − 1

∴
logb n−1∑

i=0

aif(n/bi) ≤ c1nlogb(a)−ε
nε − 1

bε − 1

∵ c1n
logb(a)−ε

nε − 1

bε − 1
≤ c1nlogb(a)−ε

nε

bε − 1
=

c1

bε − 1
· nlogb(a)

∴ T (n) ≤
c1

bε − 1
· nlogb(a) + nlogb a

∴ T (n) ∈ O(nlogb a)
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Derivation of Master’s Theorem: Case 2

From eq. (1.8), T (n) = nlog
a
b +

∑logb n−1
i=0 aif(n/bi)

∵ f(n) ∈ Θ(nlogb a logkb n)

∴ c1

logb n−1∑
i=0

ai(n/bi)logb a logkb (n/b) ≤
logb n−1∑

i=0

aif(n/bi) ≤ c2
logb n−1∑

i=0

ai(n/bi)logb a logkb (n/b)

∴ c1n
logb a logkb (n/b)

logb n−1∑
i=0

ai

bi logb a
≤

logb n−1∑
i=0

aif(n/bi) ≤ c2nlogb a logkb (n/b)

logb n−1∑
i=0

ai

bi logb a

∴ c1n
logb a

(
logkb n− logkb b

) logb n−1∑
i=0

ai

(blogb a)i
≤

logb n−1∑
i=0

aif(n/bi) ≤ c2nlogb a
(
logkb n− logkb b

) logb n−1∑
i=0

ai

(blogb a)i

∴ c1n
logb a

(
logkb n− 1

) logb n−1∑
i=0

(ai/ai) ≤
logb n−1∑

i=0

aif(n/bi) ≤ c2nlogb a
(
logkb n− 1

) logb n−1∑
i=0

(ai/ai)

∴ c1n
logb a

(
logkb n− 1

) logb n−1∑
i=0

1 ≤
logb n−1∑

i=0

aif(n/bi) ≤ c2nlogb a
(
logkb n− 1

) logb n−1∑
i=0

1

∴ c1n
logb a

(
logk+1

b n− logb n
)
≤

logb n−1∑
i=0

aif(n/bi) ≤ c2nlogb a
(
logk+1

b n− logb n
)

∴ nlogb a + c1n
logb a

(
logk+1

b n− logb n
)
≤ nlogb a +

logb n−1∑
i=0

aif(n/bi) ≤ nlogb a + c2n
logb a

(
logk+1

b n− logb n
)

∴ nlogb a + c1n
logb a

(
logk+1

b n− logb n
)
≤ T (n) ≤ nlogb a + c2n

logb a
(
logk+1

b n− logb n
)

∴ T (n) ∈ Θ
(
nlogb a logk+1

b n
)

In most cases, the value of k is 0. Thus, T (n) ∈ Θ
(
nlogb a logb n

)
Derivation of Master’s Theorem: Case 3

From eq. (1.8), T (n) = nlogb a +
∑logb n−1

i=0 aif(n/bi)

And thus we prove, T (n) ∈ Ω(f(n)).

1.5 Algorithm Design Techniques

1.5.1 Implementation

• Recursion or Iteration

• Procedural or Declarative

• Serial or Parallel

• Deterministic or Non-Deterministic

• Exact (optimal) or Approximate (NP-Hard)

1.5.2 Design

• Greedy

• Divide and Conquer
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• Dynamic Programming (DP)

• Linear Programming

• Reduction

1.5.3 Other Classifications

• By Research Area (Search, Sort, String, Graph)

• By Complexity

• Randomized Algorithm

• Branch and Bound and Backtracking

1.6 Sorting Algorithms

1.6.1 Selection Sort

Selection sort is a sorting algorithm that sorts an array by repeatedly swapping the minimum
element in the unsorted part with the first unsorted element.

For example, consider sorting the following array in ascending order:

[11, 9, 5, 7, 4]

The sorted array must look like

[4, 5, 7, 9, 11]

Here is how the selection sort algorithm works for sorting an array in ascending order:

Pass 1 We claim that the minimum element is 11. We will search for any element less than 11
in the rest of the array, and if it exists, swap it and 11.

11 9
×

5 7 4 Minimum: 9

11 9 5
×

7 4 Minimum: 5

11 9 5 7
X

4 Minimum: 5

11 9 5 7 4
×

Minimum: 4

Thus, the array obtained after the first pass is [4, 9, 5, 7, 11].

Pass 2 We start from the first element of the unsorted array, i.e. 9 and claim it as the minimum.
We shall then search for any element in the unsorted that may be lesser than 9, and
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swap it with 9.

4 9 5
×

7 11 Minimum: 5

4 9 5 7
X

11 Minimum: 5

4 9 5 7 11
X

Minimum: 5

Thus, the array obtained after the second pass is [4, 5, 9, 7, 11].

Pass 3

4 5 9 7
×

11 Minimum: 7

4 5 9 7 11
X

Minimum: 7

Thus, the array obtained after the third pass is [4, 5, 7, 9, 11]2.

Pass 4

4 5 7 9 11
X

Minimum: 9

Thus, the array obtained after the fourth pass is [4, 5, 7, 9, 11].

Therefore, the final array obtained after selection sort is [4, 5, 7, 9, 11] .

Algorithm 1: Selection Sort Algorithm
Input: Array A of n elements
Output: Array A sorted in ascending order

1 for i = 1 to n− 1 do
// Assume the ith element is the minimum

2 min_index← i;
3 for j = i+ 1 to n do
4 if A[j] < A[min_index] then
5 min_index← j;
6 end
7 end

// Swap the found minimum element with the ith element
8 if min_index 6= i then
9 temp← A[i];

10 A[i]← A[min_index];
11 A[min_index]←temp;
12 end
13 end

The time complexity of selection sort is O
(
n2

)
. The space complexity of this algorithm is O(1).

2Although the array appears to be sorted, the algorithm still needs to complete all iterations.
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1.6.2 Insertion Sort

Insertion sort is a sorting algorithm that sorts an array by trying to “insert” a certain element
in its correct place by comparing it with the all elements that are before( or after) it.

For example, consider sorting the following array in ascending order:

[11, 9, 5, 7, 4]

The sorted array must look like

[4, 5, 7, 9, 11]

Here is how the insertion sort algorithm works for sorting an array in ascending order:

Pass 1

11 9
×

5 7 4 Shift

Thus, the array obtained after the first pass is [9, 11, 5, 7, 4].

Pass 2

9 11 5
×

7 4 Shift

9 5
×

11 7 4 Shift

Thus, the array obtained after the second pass is [5, 9, 11, 7, 4].

Pass 3

5 9 11 7
×

4 Shift

5 9 7
×

11 4 Shift

5 7
X

9 11 4 Do not shift

Thus, the array obtained after the third pass is [5, 7, 9, 11, 4].

Pass 4

5 7 9 11 4
×

Shift

5 7 9 4
×

11 Shift

5 7 4
×

9 11 Shift

5 4
×

7 9 11 Shift

Thus, the array obtained after the fourth pass is [4, 5, 7, 9, 11].

Therefore, the final array obtained after insertion sort is [4, 5, 7, 9, 11] .

Page 13 of 41



The best-case time complexity of insertion sort is O(n) and worst-case time complexity is O
(
n2

)
.

The space complexity of this algorithm is O(1).

Algorithm 2: Insertion Sort Algorithm
Input: Array A of n elements
Output: Array A sorted in ascending order

1 for i = 2 to n do
2 key ← A[i];
3 j ← i− 1;

// Shift elements of A[1 . . . i− 1] that are greater than key to one
position ahead

4 while j > 0 and A[j] > key do
5 A[j + 1]← A[j];
6 j ← j − 1;
7 end

// Insert the key at the correct position
8 A[j + 1]← key;
9 end

1.6.3 Heap Sort

Heap sort is a sorting algorithm that sorts an array by making use of the characteristic property
of the heap data structure. We repeatedly find the maximum element of an array, place it at
the end and consider the final elements to be sorted.

Heaps

A heap is a special type of binary tree which has the characteristic property that the children
of a particular node have values which are lesser than the value of their parent. Such a heap is
called a max-heap since the maximum element is at the root.

A min-heap is a heap where the children have values which are greater than the value of the
parent.

We will almost talk exclusively about max-heaps in this section until specified otherwise.

Relation between Arrays and Trees

A tree can be represented using a single array, this is done by making clever use of indices of
the array. The root of the tree is the first element in the array, all the subsequent children of a
node at index i are located at the (2i)th and (2i+ 1)th positions in the array.

a

b c

d e f

[a b c d e f ]

1 2 3 4 5 6
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Algorithm 3: Build Max-Heap
Input: Array A of length n

Output: A max-heap represented in the array A
1 n← length(A);
2 for i← bn/2c downto 1 do
3 Max-Heapify(A, i);
4 end

Algorithm 4: Max-Heapify
Input: Array A, index i
Output: The subtree rooted at index i is a max-heap

1 l← 2i // left child
2 r ← 2i+ 1 // right child
3 if l ≤ heap-size(A) and A[l] > A[i] then
4 largest← l;
5 end
6 else
7 largest← i;
8 end
9 if r ≤ heap-size(A) and A[r] > A[largest] then

10 largest← r;
11 end
12 if largest 6= i then
13 Swap A[i] and A[largest];
14 Max-Heapify(A, largest);
15 end

Algorithm 5: Heap Sort
Input: Array A of length n

Output: Sorted array A
1 Build Max-Heap(A);
2 n← length(A);
3 for i← n downto 2 do
4 Swap A[1] with A[i];
5 heap-size(A)← heap-size(A)− 1;
6 Max-Heapify(A, 1);
7 end

For example, consider sorting the following array in ascending order:

[1, 4, 2, 8, 5, 7]

The sorted array must look like

[1, 2, 4, 5, 7, 8]

Here is how the heap sort algorithm works for sorting an array in ascending order:
Build the Heap
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1

4 2

8 5 7

[1, 4, 2, 8, 5, 7]

8

5 7

4 1 2

[8, 5, 7, 4, 1, 2]

Pass 1

7

5 2

4 1 8

[7, 5, 2, 4, 1, 8]

Thus, the array obtained after the first pass is [7, 5, 2, 4, 1, 8].

Pass 2

5

4 2

1 7 8

[5, 4, 2, 1, 7, 8]

Thus, the array obtained after the second pass is [5, 4, 2, 1, 7, 8].

Pass 3

4

1 2

5 7 8

[4, 1, 2, 5, 7, 8]

Thus, the array obtained after the third pass is [4, 1, 2, 5, 7, 8].
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Pass 4

2

1 4

5 7 8

[2, 1, 4, 5, 7, 8]

Thus, the array obtained after the fourth pass is [2, 1, 4, 5, 7, 8].

Pass 5

1

2 4

5 7 8

[1, 2, 4, 5, 7, 8]

Thus, the array obtained after the fifth pass is [1, 2, 4, 5, 7, 8].

Pass 6

1

2 4

5 7 8

[1, 2, 4, 5, 7, 8]

Thus, the array obtained after the sixth pass is [1, 2, 4, 5, 7, 8].

Therefore, the final array obtained after heap sort is [1, 2, 4, 5, 7, 8] .

The time complexity of heap sort is O(n lg n). The space complexity of this algorithm is O(1).
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Chapter 2
Graph Algorithms

2.1 Graphs

A graph G = (V,E) is defined as a set of nodes or vertices V connected to each other by edges
E where E ⊆ V × V .

A graph can be:

• Directed or Undirected

• Cyclic or Acyclic

• Weighted or Unweighted

• Connected or Disconnected

• Bipartite

• Multigraphs

• Hierarchical (Trees)

• Unit-degree (Linked Lists)

A

B

C

D

E

F

Figure 2.1: An unweighted undirected acyclic and connected graph

Graphs can be used in modelling real world networks such as electrical circuitry, motor roadways,
computer networks, etc.
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2.2 Elementary Graph Algorithms

Notation

An edge from vertex u to vertex v is denoted as the pair (u, v) ∈ E. For an undirected graph,
(u, v) ∈ E ⇐⇒ (v, u) ∈ E (Holy crap symmetric relation).

The set of all vertices connected from vertex u is given by Adj[u].

Adj[u] := {v ∈ V | (u, v) ∈ E}

A vertex v ∈ V might have certain attributes, which are denoted using the dot (.) notation.

• The current parent (previous vertex) of v is denoted as v.π.

• The current shortest distance of v from some source vertex is denoted as v.d.

• The current color (white, gray or black) of v relevant to a graph traversal is denoted
as v.color.

• The finishing time of v in a graph traversal is denoted as v.f .

• The current minimum weight of any edge connecting v to any vertex in the graph is
denoted as v.key.

For directed graphs, a weight function w : E → R is used to map each edge to a weight.

If an edge does not exist, we can store a nil value as its corresponding entry, though for many
problems it is convenient to use a value such as 0 or ∞.

w(u, v) = nil ⇐⇒ (u, v) /∈ E

2.2.1 Representation of Graphs

Consider the following graph:

A

B

C

Figure 2.2: An unweighted directed cyclic and connected graph

Adjacency Matrices

An adjacency matrix [aij ] is a boolean matrix of order |V | × |V | defined as follows:

[aij ] :=

1, if (i, j) ∈ E

0, otherwise
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For example, the adjacency matrix of the graph in fig. 2.2 would be:

A B C
A 0 0 1

B 1 1 0

C 1 0 0

or

0 0 1

1 1 0

1 0 0



The space requirements of an adjacency matrix representation would vary as O
(
|V |2

)
.

Adjacency Lists

For an adjacency list representation, we maintain a linked list of vertices for each vertex that
stores the vertices that are connected from that vertex. When a new edge is added to the graph,
the destination vertex must be appended to the list corresponding to the source vertex.

For example, the adjacency list of the graph in fig. 2.2 would be:

A : C → ∅

B : A → B → ∅

C : A → ∅

The space requirements of an adjacency list representation would vary as O(|E|+ |V |).

2.2.2 Depth-First Search

Depth-First Search (DFS)

Algorithm 6: Depth-First Search (DFS)
Input: Graph G = (V,E)

Output: Discovery and finishing times of all vertices
1 foreach vertex u ∈ V do
2 u.color ← white;
3 u.π ← nil;

4 time ← 0;
5 foreach vertex u ∈ V do
6 if u.color = white then
7 DFS-Visit(u);

Page 20 of 41



Algorithm 7: DFS-Visit(u)

1 u.color ← gray;
2 time ← time + 1;
3 u.d← time;
4 foreach vertex v ∈ Adj[u] do
5 if v.color = white then
6 v.π ← u;
7 DFS-Visit(v);

8 u.color ← black;
9 time ← time + 1;

10 u.f ← time;

2.2.3 Breadth-First Search

Breadth-First Search (BFS)

Algorithm 8: Breadth-First Search (BFS)
Input: Graph G = (V,E), source vertex s
Output: Shortest path from s to all other vertices

1 foreach vertex u ∈ V \ {s} do
2 u.color ← white;
3 u.d←∞;
4 u.π ← nil;

5 s.color ← gray;
6 s.d← 0;
7 s.π ← nil;
8 Q← ∅;
9 Enqueue(Q, s);

10 while Q 6= ∅ do
11 u← Dequeue(Q);
12 foreach vertex v ∈ Adj[u] do
13 if v.color = white then
14 v.color ← gray;
15 v.d← u.d+ 1;
16 v.π ← u;
17 Enqueue(Q, v);

18 u.color ← black;

2.2.4 Topological Sorting

Algorithm 9: Topological Sort
Input: Directed Acyclic Graph (DAG) G = (V,E)

Output: A topological ordering of vertices
1 Perform DFS on G to compute finishing times u.f for each vertex u;
2 As each vertex is finished, insert it onto the front of a linked list;
3 return the linked list of vertices;
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The time complexity of topological sorting is O(|V |+ |E|). The space complexity of this algo-
rithm is O(|V |).

2.2.5 Strongly Connected Components

A subgraph H of a graph G is said to be a Strongly Connected Component (SCC) iff for every
pair of vertices u and v in H.V v is reachable from u and u is reachable from v, i.e.,

H is an SCC of G ⇐⇒ H ⊆ G ∧ ∀u ∈ H.V ∀v ∈ H.V (u v ∧ v  u).

We can determine the SCCs of a graph using Kosaraju’s algorithm.

Algorithm 10: Kosaraju’s Algorithm
Input: Graph G = (V,E)

Output: Strongly connected components of G
1 Call DFS on G to compute finishing times u.f for each vertex u;
2 Compute G> (the transpose of G);
3 Call DFS on G>, but in the main loop of DFS, consider vertices in order of decreasing

u.f (from the original DFS);
4 Each tree in the depth-first forest of G> is a strongly connected component;

The time complexity of Kosaraju’s algorithm is O(|V |+ |E|). The space complexity of this
algorithm is O(|V |).

2.2.6 Trees

An acyclic and connected graph is known as a tree. If a tree is directed, then the graph is known
as a DAG.

Trees are used to represent hierarchical relationships, indicating that the parents “come first”
before the children.

2.3 Spanning trees

Spanning trees of a graph are special trees which contain every node in the graph without forming
any cycles.

A

B

C

D

E

F

Figure 2.3: A spanning tree for the graph in fig. 2.1

A spanning tree will always have exactly |V | − 1 edges.

A complete graph will have |V ||V |−2 spanning trees (Cayley’s formula).
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2.3.1 Minimum spanning trees

A Minimum Spanning Tree (MST) is a special spanning tree where the sum of the all the edges
which have been included is the minimum possible for that particular graph.

For an unweighted, graph any spanning tree is a valid minimum spanning tree as well, as the
total weight of the tree will always be |V | − 1 no matter what.

2.3.2 Generic algorithm

The generic algorithm to find the MST is as follows:

Algorithm 11: Generic MST

1 T←∅;
2 while T does not form a spanning tree do
3 Find an edge (u, v) which is safe for T ;
4 T ← T ∪ {(u, v)};

5 return T ;

A safe edge is an edge which maintains the loop invariant before and during the execution of
the loop.

2.3.3 Kruskal’s algorithm

This algorithm is an example of a greedy1 algorithm as we include the edges the least possible
weight without forming a cycle.

Algorithm 12: Kruskal’s Algorithm
Input: Graph G = (V,E), edge weights w(e) for all e ∈ E
Output: A minimum spanning tree T

1 T ← ∅;
2 Sort the edges of E into non-decreasing order by weight w;
3 foreach edge (u, v) in the sorted edge list do
4 if u and v are in different components then
5 Add edge (u, v) to T ;
6 Union the sets containing u and v;

7 return T ;

We make use of the disjoint set data structure to make sure that no cycles are formed at the
inclusion of a new edge into the tree.

The best-case time complexity of Kruskal’s algorithm is O(|E| lg |E|) and the worst-case time-
complexity is O(|E| lg |V |). The space complexity of this algorithm is O(|E|+ |V |).

For example, consider finding the MST of the following weighted graph:

Initialise the tree

T = {}

Sort the edges
1Refer the chapter regarding greedy algorithms.
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6

31

2 4 7

562

2 4 5

31

3

1 3

2

6

31

2 4 7

5

E
weight

=

{
(1, 3)

1
, (2, 4)

1
, (1, 6)

2
, (2, 6)

2
, (5, 7)

2
, (1, 2)

3
, (3, 5)

3
, (4, 7)

3
, (4, 6)

4
, (6, 7)

5
, (3, 6)

6

}
Iterating

Pass 1
T = {(1, 3)}

6

31

2 4 7

5
1

Pass 2
T = {(1, 3), (2, 4)}

6

31

2 4 7

51

1

Pass 3
T = {(1, 3), (2, 4), (1, 6)}

6

31

2 4 7

51

1

2

Pass 4
T = {(1, 3), (2, 4), (1, 6), (2, 6)}
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6

31

2 4 7

51

1

2

2

Pass 5
T = {(1, 3), (2, 4), (1, 6), (2, 6), (5, 7)}

6

31

2 4 7

51

1

2

2
2

Pass 6
T = {(1, 3), (2, 4), (1, 6), (2, 6), (5, 7)}

6

31

2 4 7

51

1

2

2
23

The edge (1, 2) forms a cycle so it is not included.

Pass 7
T = {(1, 3), (2, 4), (1, 6), (2, 6), (5, 7), (3, 5)}

6

31

2 4 7

51

1

2

2
2

3

|T | = 6 = |V | − 1. Therefore, the algorithm can stop now. Alternatively, we can say that all
subsequent passes (Passes 8, 9, 10, 11, 12) lead to an edge which causes the formation of a
cycle. Hence, we can safely say that a spanning tree has been formed .

The cost of the above MST is 1 + 2 + 2 + 1 + 3 + 2 = 11. (Ans.)
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2.3.4 Prim’s Algorithm

Algorithm 13: Prim’s Algorithm
Input: Graph G = (V,E), edge weights w(e) for all e ∈ E, starting vertex r
Output: A minimum spanning tree T

1 foreach vertex u ∈ V do
2 u.key ←∞;
3 u.π ← nil;

4 r.key ← 0;
5 Q← ∅ // Initialise the Priority Queue
6 foreach vertex u ∈ V do
7 Q·insert(u);

8 while Q 6= ∅ do
9 u← Extract-Min(Q);

10 foreach vertex v ∈ Adj[u] do
11 if v ∈ Q and w(u, v) < v.key then
12 v.π ← u;
13 v.key ← w(u, v);

14 return {(v, v.π) : v ∈ V, v.π 6= nil};

The following three-pointed loop invariant is followed for every iteration:

1. A = {(v, v.π) | v ∈ V \ ({r} ∪Q)}.

2. The vertices already placed into the minimum spanning tree are those in V/Q.

3. For all vertices v ∈ Q, v 6= nil =⇒ v.key <∞ ∧ v.key = w(e0) where e0 = (v, v.π) |e0 =

light edge2 connecting v to some vertex already placed into the minimum spanning tree.

The best-case as well as worst-case time complexity of Prim’s algorithm is O(|E| lg |V |). The
space complexity of this algorithm is O(|E|+ |V |).

For example, consider finding the MST of the following weighted graph:

1

2
3

4

5

7 8

A B

C D

E

Assuming r = A

After inserting all elements in the priority queue Q

2Kabhi padhai bhi kar lo.
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Q =
[
A
0
, B

∞
, C

∞
, D

∞
, E

∞

]
A B

C D

E

After pass 1

Q =
[
B
1
, D

2
, C

3
, E

∞

]
1

2
3

A B

C D

E

After pass 2
Q =

[
D
2
, C

3
, E

∞

]
No new additions to the tree as an edge of greater weight is being introduced.

After pass 3

Q =
[
C
3
, E

8

]
1

2
3

8

A B

C D

E

After pass 4
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Q =
[
E
8

]
1

2
3

7

A B

C D

E

After pass 5
Q = ∅

No new additions to the tree as all elements in adjacency list of E are out of Q.

Since, the priority queue is empty, we can stop the algorithm.
The MST has been formed successfully . The cost of the above MST is 1 + 2 + 3 + 7 = 10.

(Ans.)

2.4 Shortest Path Algorithms

2.4.1 Single-Source Shortest Path Algorithm

Dijkstra’s Algorithm

Algorithm 14: Dijkstra’s Algorithm
Input: Graph G = (V,E), edge weights w(e) ≥ 0, starting vertex s
Output: Shortest path distances from s to all vertices

1 foreach vertex u ∈ V do
2 u.d←∞;
3 u.π ← nil;

4 s.d← 0;
5 Q← ∅ // Initialise the Priority Queue
6 foreach vertex u ∈ V do
7 Q·insert(u);

8 while Q 6= ∅ do
9 u← Extract-Min(Q);

10 foreach vertex v ∈ Adj[u] do
11 if v.d > u.d+ w(u, v) then
12 v.d← u.d+ w(u, v);
13 v.π ← u;
14 Q·Reduce-Key(v, v.d);

The best-case time complexity of Dijkstra’s algorithm is O(|V | lg |V |+ |E| lg |V |) and the worst-
case time-complexity isO

(
|V |2

)
. The space complexity of this algorithm isO

(∣∣V 2
∣∣) orO(|E|+ |V |)

depending on the data structure used.
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For example, consider applying Dijkstra’s Algorithm on the following graph with the starting
vertex s = A:

D

C

A

B E

1

4

2

3

5

3 2

1

After inserting all elements in the priority queue Q

Q =
[
A
0
, B

∞
, C

∞
, D

∞
, E

∞

]

D

C

A

B E

Element Distance Parent
A 0 nil
B ∞ nil
C ∞ nil
D ∞ nil
E ∞ nil

After pass 1

Q =
[
B
1
, C

4
, D

∞
, E

∞

]

D

C

A

B E

1

4 Element Distance Parent
A 0 nil
B 1 A
C 4 A
D ∞ nil
E ∞ nil

After pass 2

Q =
[
D
3
, E

3
, C

4

]

D

C

A

B E

1

4

2

2

Element Distance Parent
A 0 nil
B 1 A
C 4 A
D 3 B
E 3 B

After pass 3
Q =

[
E
3
, C

4

]
No changes as the condition to perform relaxation does not occur.
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After pass 4
Q =

[
C
4

]
No changes as the condition to perform relaxation does not occur.

After pass 5
Q = ∅

No changes as the adjacency list of C is empty.

Since, the priority queue is empty, we can stop the algorithm. The following table states the
shortest distances from A to every other node.

Element Distance Parent
A 0 nil
B 1 A
C 4 A
D 3 B
E 3 B

(Ans.)

Note

When there exist negative weight cycles, one can just travel along that cycle and get an even
lesser distance. This can go on forever. Hence, ANY shortest distance algorithm is incorrect in
such cases.

Bellman-Ford Algorithm

Algorithm 15: Bellman-Ford Algorithm
Input: Graph G = (V,E), edge weights w(e), starting vertex s
Output: Shortest path distances from s to all vertices, or report if a negative-weight

cycle exists
1 foreach vertex u ∈ V do
2 u.d←∞;
3 u.π ← nil;

4 s.d← 0;
5 for i = 1 to |V | − 1 do
6 foreach edge (u, v) ∈ E do
7 if v.d > u.d+ w(u, v) then
8 v.d← u.d+ w(u, v);
9 v.π ← u;

10 foreach edge (u, v) ∈ E do
11 if v.d > u.d+ w(u, v) then
12 return “Negative-weight cycle exists”;

The best-case as well as worst-case time complexity of the Bellman-Ford algorithm is O(|E||V |).
The space complexity of this algorithm is O(|V |).

figure
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2.4.2 All-Pairs Shortest Paths Algorithms

All-Pairs Shortest Paths Algorithm

All-Pairs Shortest Paths (APSP) algorithm.

Consider the ways to get to a certain node from a certain predefined node in a given graph.

1

2

3
10

3
5

In the above graph, the current path from 1 to 3 has a weight of 10, with one edge being
traversed. If we somehow increase the number of edges to 2, then we can go from 1 to 2 and
then 2 to 3 and have a reduced path of 8 with 2 edges being traversed.

The above procedure is known as the “Extend-Shortest-Path” Procedure. The algorithm for it
is as follows:

Algorithm 16: Extend-Shortest-Path
Input: L(r)=Matrix of shortest paths with r edges, W=Weight matrix containing the

weight of all the edges
Output: L(r+1)=Matrix of shortest paths with r edges

1 if l(r)ij < l
(r)
ik + wkj then

2 l
(r+1)
ij ← l

(r)
ik + wkj ;

// Extend the shortest path

3 else
4 l

(r+1)
ij ← l

(r)
ij ;

// Keep the same path

We repeatedly extend the shortest path for |V | times. As the maximum number of edges we
need to cross to get to a particular node is |V |−1. The last extension is performed to make sure
that we have covered self paths as well.
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Algorithm 17: APSP
Input: Weight Matrix W
Output: M = The shortest path matrix containing where mij is the weight of the

shortest path from i to j
1 L← ∅,M ← ∅;
2 for i = 1 to |V | do
3 for j = 1 to |V | do
4 lij ← 0 if (i = j) else ∞;

// Initialise L(0)

5 for r = 1 to |V | do
6 for i = 1 to |V | do
7 for j = 1 to |V | do
8 for k = 1 to |V | do
9 M ←Extend-Shortest-path(L,W );

// Alternatively mij ← min(lij , lik + wkj)

10 L←M ;

11 return M ;

The time complexity of the APSP algorithm is O
(
|V |4

)
. The space complexity of this algorithm

is O
(
|V |2

)
.

Consider we have to apply the APSP algorithm on the following graph:

A B

C D

5

3 2 4

1

W =


∞ 5 3 2
∞ ∞ ∞ 4
∞ ∞ ∞ ∞
∞ ∞ 1 ∞



Before Iterating

L(0) =


0 ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0


After pass 1

L(1) =


0 5 3 2

∞ 0 ∞ 4

∞ ∞ 0 ∞
∞ ∞ 1 0


After pass 2

L(2) =


0 5 3 2

∞ 0 5 4

∞ ∞ 0 ∞
∞ ∞ 1 0


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After pass 3

∵ L(3) = L(2) =


0 5 3 2

∞ 0 5 4

∞ ∞ 0 ∞
∞ ∞ 1 0


After this, no extensions lead to a shorter path for any of the pairs, hence the algorithm is
complete and we can stop. L(3) contains the required single source shortest path lists for every
starting node. (Ans.)

Floyd-Warshall algorithm

Although, we perform a similar computation here as in the generic APSP algorithm, the intuition
behind this algorithm is a bit different.

In this algorithm, the values d(k)ij represent the distance to be travelled from node i to node j by
somehow travelling to node k first and then to j from k. This covers all the different possibilities
to get from i to j, including the direct path as well. We then ∨ these possibilities to get the final
answer. (Remember Discrete Structures).

But the above algorithm only helps us to determining the existence of a path. Instead we use the
min operation to find the minimum path instead of using the ∨ operator defined for booleans.

Algorithm 18: Floyd-Warshall Algorithm
Input: Graph G = (V,E), weight matrix W = (wij) for all i, j
Output: Shortest path distances between every pair of vertices

1 n← |V |;
2 for k = 1 to n do
3 for i = 1 to n do
4 for j = 1 to n do
5 d[i][j]← min(d[i][j], d[i][k] + d[k][j]);

6 return d;

The time complexity of the Floyd-Warshall algorithm is O
(
|V |3

)
. The space complexity of this

algorithm is O
(
|V |2

)
.

d
(k)
ij =

wij , k = 0,

min
(
d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

)
, k ≥ 1

Π
(0)
ij =

nil, i = j ∨ wij =∞,

i, i 6= j ∧ wij <∞

Π
(k)
ij =

Π
(k−1)
ij , d

(k−1)
ij ≤ d(k−1)

ik + d
(k−1)
kj ,

Π
(k−1)
kj , d

(k−1)
ij > d

(k−1)
ik + d

(k−1)
kj

For example, consider the following graph:
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1

2

3

45

3
8

-4

17

4

-52

6

D0 =


0 3 8 ∞ −4
∞ 0 ∞ 1 7

∞ 4 0 ∞ ∞
2 ∞ −5 0 ∞
∞ ∞ ∞ 6 0

 Π0 =


nil 1 1 nil 1

nil nil nil 2 2

nil 3 nil nil nil
4 nil 4 nil nil

nil nil nil 5 nil



D1 =


0 3 8 ∞ −4
∞ 0 ∞ 1 7

∞ 4 0 ∞ ∞
2 5 −5 0 −2
∞ ∞ ∞ 6 0

 Π1 =


nil 1 1 nil 1

nil nil nil 2 2

nil 3 nil nil nil
4 1 4 nil 1

nil nil nil 5 nil



D2 =


0 3 8 4 −4
∞ 0 ∞ 1 7

∞ 4 0 5 11

2 5 −5 0 −2
∞ ∞ ∞ 6 0

 Π2 =


nil 1 1 2 1

nil nil nil 2 2

nil 3 nil 2 2

4 1 4 nil 1

nil nil nil 5 nil



D3 =


0 3 8 4 −4
∞ 0 ∞ 1 7

∞ 4 0 5 11

2 1 −5 0 −2
∞ ∞ ∞ 6 0

 Π3 =


nil 1 1 2 1

nil nil nil 2 2

nil 3 nil 2 2

4 3 4 nil 1

nil nil nil 5 nil



D4 =


0 3 −1 4 −4
3 0 −4 1 −1
7 4 0 5 3

2 1 −5 0 −2
8 7 1 6 0

 Π4 =


nil 1 4 2 1

4 nil 4 2 1

4 3 nil 2 1

4 3 4 nil 1

4 3 4 5 nil



D5 =


0 3 −3 2 −4
3 0 −4 1 −1
4 4 0 5 3

2 1 −5 0 −2
8 7 1 6 0

 Π5 =


nil 1 4 5 1

4 nil 4 2 1

4 3 nil 2 1

4 3 4 nil 1

4 3 4 5 nil


We have completed all the 5 iterations, the matrix D5 contains the single source shortest path
lists from a node i in it’s ith row. Similarly, the corresponding row of Π5 contains the required
parent lists for the single source shortest paths. (Ans.)
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Chapter 3
Divide and Conquer

The divide and conquer approach is a powerful strategy for designing asymptotically efficient
algorithms. A famous example of the divide and conquer algorithm is merge sort, an asymptot-
ically efficient sorting algorithm.

In the divide and conquer method, we are given an instance of a problem and we solve it
recursively until it becomes small enough (base case) that we know the answer directly. In the
recursive cases, we solve the problem as follows:

1. Divide the problem into one or more sub-problems that are smaller instances of the same
problem.

2. Conquer the sub-problems by recursively solving them.

3. Combine the sub-problems to form a solution to the original sub-problem.

We have seen how to solve the recurrences using various different methods, we will use those
methods to analyse the time and space complexities of the algorithms discussed in the first
chapter.

3.1 Binary Search

The purpose of a searching algorithm is to find a specific element present in a data structure.1

The naive linear search algorithm used in appendix A.2 has asymptotic time complexity of Θ(n)

in the average and worst case scenario. There exists a more efficient algorithm for searching
based on the divide and conquer technique called binary search.

1Read more about the searching problem in appendix A
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Algorithm 19: Binary Search - Recursive (BS-Recursive)
Input: Sorted array A of n elements, Element b to be searched, low and high- the

index of smallest and largest element of subarray.
Output: Index of b in A

1 if low > high then
2 return −1;

3 mid← (low + high)/2;
4 if A[mid] = b then
5 return mid;

6 else if A[mid] < b then
7 return BS-Recursive(A, b,mid+ 1, high);

8 else
9 return BS-Recursive(A, b, low,mid− 1);

The initial call to BS-Recursive(A, b, 1, n) provides us with the index of b.

3.1.1 Why this specific algorithm

The above algorithm seems pretty arbitrary in terms of the method used and it is not visible at
first glance how it relates to the divide and conquer method.

Consider line 4 of the above binary search algorithm, we compute the index of the middlemost
element of the array and compare it with the element to be found. If the middlemost element
of the array is the required element b, then we directly return mid.

If this does not occur then we compare the middlemost element and b depending on their
difference, we narrow down the position of b to the left or right subarray of A. We
are allowed to narrow the position down because we know that A is actually a sorted array.
Therefore, if b is larger than the middlemost element then we can say that it is in the right
subarray of A. Otherwise it is in the left subarray of A.

3.1.2 Divide and Conquer

1. Divide the array into half

2. Conquer the subarray by finding the position of the element in this subarray.

There is no combine step as we only have one recursive call to a smaller sub-problem.

Another popular variation of the binary search algorithm is as follows where we use tail recursion
elimination to make use of an iterative statement:
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Algorithm 20: Binary Search
Input: Sorted array A of n elements, Element b to be searched
Output: Index of b in A

1 high ← n, low ← 1;
2 while high ≥ low do

3 mid ←

⌊
low + high

2

⌋
;

4 if A [mid] = b then
5 return mid;

6 else if A [mid] < b then
7 high ← mid−1;

8 else
9 low ← mid+1;

10 return -1;

The binary search algorithm has time complexity O(lg n) and the space complexity is O(lg n)

(for the recursive algorithm) and O(1) (for the iterative algorithm).

For example, consider searching for the element 5 the following array:

[1, 2, 4, 5, 7, 8]

Pass 1
[ 1
low
, 2, 4

mid
, 5, 7, 8

high
]

The value of mid element is less than the value to be searched (5), so search the right
sub-array.

Pass 2
[1, 2, 4, 5

low
, 7

mid
, 8

high
]

The value of mid element is more than the value to be searched (5), so search the left
sub-array.

Pass 3
[1, 2, 4, 5

low, mid, high
, 7, 8]

The value of mid element is equal to the value to be searched (5), so return the current
value of mid(4).

3.2 Quick Sort

3.3 Merge Sort
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Appendix A
Important Algorithms

A.1 Searching

The purpose of a searching algorithm is to find a specific element present in a data structure.
Usually, the problem is stated as follows:

Given a sequence of elements, 〈a1, a2, a3, · · · , an〉, find the position of an element b
in the sequence.

A.2 Linear Search

To solve this problem, the naive approach would be to search all elements of the array (note that
we will be using fixed length arrays to represent sequences), stopping when we find the required el-

ement.

Algorithm 21: Linear Search (Naive approach)
Input: Array A of n elements, Element b to be searched
Output: Index of b in A

1 for i← 1 to n do
2 if A[i] = b then
3 return i;
4 end
5 end
6 return −1;

We can easily analyse the average-case (required element is somewhere close to the middle of
the array) time complexity of the above algorithm as follows.

T (n) = c0 + c0 + · · ·+ c0︸ ︷︷ ︸
n/2 times

=
c0
2
· n

T (n) ∈ Θ(n)

We read about a better sorting algorithm in chapter 3.
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A.3 Sorting

The purpose of a sorting algorithm is to sort a given set of records based on the value of a
particular field present in the record. The values upon which the records are sorted are called
the keys of the record. The remaining fields of the record are known as satellite data.

Usually, the problem is stated as follows:

Given a sequence of elements, 〈a1, a2, a3, · · · , an〉, return it’s permutation 〈a′1, a′2, a′3, · · · , a′n〉,
where a′1 ≤ a′2 ≤ a′3 ≤ · · · ≤ a′n.

A.3.1 Why sorting?

Many computer scientists consider sorting to be the most fundamental problem in the study of
algorithms. There are several reasons:

• An application needs to inherently sort information and prepare results. Example: Banks
need to sort cheques by cheque number.

• Algorithms often use sorting as a key subroutine.

• Sorting is a problem of historical interest leading to development of various different forms
of algorithm solving techniques.

• A non-trivial lower bound for sorting can be proven for sorting. Since, the upper bound
of many sorting algorithms match lower bound asymptotically, we can say that certain
sorting algorithms are optimal.
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Acronyms

APSP All-Pairs Shortest Paths 31–33

BFS Breadth-First Search 21

DAA Design and Analysis of Algorithms 1

DAG Directed Acyclic Graph 21, 22

DFS Depth-First Search 20–22

DP Dynamic Programming 11

Gojo Aaditya Joil 1

MST Minimum Spanning Tree 23, 25, 26, 28

RRG Rupak R. Gupta 1

SCC Strongly Connected Component 22
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The End.
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