Design and Analysis of Algorithms (DAA)

Rupak R. Gupta (RRG)
Aaditya Joil (Gojo)

2024

Contents

(1

Introduction to Analysis of Algorithms|

IL.1 Algorithms|

1.2 Performance of an Algorithm|

[1.2.1 Time Complexity|.

[1.2.2 Space Complexity]

1.3 Asymptotic Notations|

1.3.1 -N 10| . . .o

L1322 O-Notationl
11.3.3 ©-Notationl e

1.4 Solving Recurrences|

[1.4.1 Substitution Method|
1.4. rsion Ireel e e

1.5 Algorithm Design Techniques|

11.5.1 Implementation|.

1.6 Sorting Algorithms| L

[1.6.3 Heap Sort|

[2

Graph Algorithms|

2.1 Graphs|.

2.2 Elementary Graph Algorithms|

Page 1 of

N = >~ V- B OC R UL R]

(@31

co 0w N O

2.2.1 Representation of Graphs| o 0oL

2.2.2 Depth-First Search| oo

2.3 Spanning trees| L L

2.3.1 Minimum spanning trees|.o

2.3.2 Generic algorithm| oo oo

2.3.3 Kruskal’s algorithm| oo

[2.3.4 Prim’s Algorithm|

[2.4 Shortest Path Algorithms|

[2.4.1 Single-Source Shortest Path Algorithm|.

2.4.2 All-Pairs Shortest Paths Algorithms|

[3 Divide and Conquer|

3.1 Binary Search|.

13.1.1 Why this specific algorithm|

13.1.2 Divide and Conquer| e

3.2 Quick Sort|.

3.3 Merge Sort]

[A Important Algorithms|

A.1 Searching| e

A

[A.3.1 Why sorting?|

ACronyims

Page 2 of

35
35
36
36
37
37

38
38
38
39
39

40

Chapter

Introduction to Analysis of Algorithms

1.1 Algorithms

Informally, an algorithm is any well-defined computational procedure that solves a problem.
Every algorithm must satisfy the following properties:

Definiteness Every step in an algorithm must be clear and unambiguous.

Finiteness Every algorithm must produce a result within a finite number of steps.
Effectiveness Every instruction must be executed in a finite amount of time.

Input and Output Every algorithm must take zero or more number of inputs and must pro-

duce at least one output as result.

Correctness The proposed algorithm should produce correct and unambiguous results.

1.2 Performance of an Algorithm

The performance of an algorithm can be measured by the metrics of time and space complexities.

1.2.1 Time Complexity

The time complexity is the computational complexity that describes the amount of computer
time it takes to run an algorithm. It is calculated by assuming that each elementary operation
takes a constant amount of time and finding out the total number of elementary operations. It

is usually stated as a function of the size (n) of the input.

1.2.2 Space Complexity

The space complexity of an algorithm or a data structure is the amount of computer memory
required to solve an instance of the computational problem. It is the memory required by an
algorithm until it executes completely and contains the input space as well as the auxiliary space.

Like time complexity it also is represented as a function of the size (n) of the input.

Page 3 of

1.3 Asymptotic Notations

The time and space complexity varies drastically from one algorithm to another, even varying
for the same algorithm with different inputs. So we represent the functions in terms of the rate

at which they grow. This representation is known as asymptotic notationﬂ

1.3.1 O-Notation

O(gn)) ={fn)|F3ec>03ne>0Vn>np:0< f(n) <cg(n)} (1.1)
It provides an asymptotic upper bound on the rate of growth of a function. If a function f(n)
is O(g(n)) it means that f(n) grows at a rate that is at most as fast as g(n) as n — co.
Q.1. Find the O-notation for f(n) = 6n3 +n? + 3n + 3.

f(n)=06n3+n%+3n+3

6 +n2+3n+3<6n*+n>+3n+n Vn>3
< 6n3+n%+4n
6n° +n? +4n < 6n® + n? +n? Vn>4
< 6n3 + 2n>
6n3 + 2n% < 6n +nd Vn(n®>2n?) orVn>2
< n?
o f(n) <? (F@<hA(b<e) = (a<0)
Thus, for all n > 2, f(n) < cn®, with ¢=7. Thus, | f(n) € O(n®) | (Ans.)
o-Notation
o(gn)) ={f(n)|[Ve>03Ing>0Vn>ng:0<f(n) <cg(n)} (1.2)

o-notation is defined in a similar way to O-notation, but it provides a stricter upper bound
for the asymptotic growth of a function. If a function f(n) is o(g(n)) it means that f(n) is
guaranteed to grow at a lesser rate as compared to g(n) as n — oo. The following equation
holds true if f(n) € o(g(n)):

)
oy =0
1.3.2 ()-Notation
Qg(n) = {f(n) |3 c>03ng >0V n>ng : 0<cgn) < f(n)} (13)

It provides an asymptotic lower bound for the rate of growth of a function. If a function f(n) is

defined Q(g(n)) it means that f(n) grows at a rate that is at least as slow as g(n) as n — oc.
Q.2. Find out Q-notation for the function 4n> + 2n + 8.
If given f(n) is 2(g(n)) then: c- g(n) < f(n).

1We use this term because we evaluate the rate of growth as n — co.

Page 4 of

Let ¢ =4 and g(n) = n?
socog(n) < f(n)
cAn® <d4nd +2n+8
.0<2n+8

which is true Vn(n > 0). Thus, | f(n) € Q(n?)|. (Ans.)

Q.3. Find the Q-notation for f(n) :=4-2" + 3n.

If given f(n) is Q(g(n)) then: c¢- g(n) < f(n).
Let ¢ € (0,4] and g(n) = 2™.

soe-g(n) < f(n)
e 2"< 42"+ 3n

S(e—4)2" <3n
which is true ¥n(n > 0). Thus, | f(n) € Q2(2")|. (Ans.)
w-Notation
wlgn)) ={f(n)|Ve>03Ing>0Vn>ng:0<cg(n) < f(n)} (1.4)

w-notation is defined in a similar way to 2-notation, but it provides a stricter lower bound for the
asymptotic growth of a function. If a function f(n) is w(g(n)) it means that f(n) is guaranteed

to grow at a greater rate as compared to g(n) as n — co. The following equation holds true if

f(n) € w(g(n)):

lim —— =
n—o0 g(n)

It is important to note that o and w are complementary in nature:

¢(n) € o(¢(n)) <= ¢(n) € w(¢(n)) (1.5)

1.3.3 ©-Notation

O(g(n)) ={fn)|Fec1,c2a>0TIme>0Vn>ng: 0<cig(n) < f(n) <cog(n)} (1.6)

It provides asymptotic upper and lower bounds for the rate for growth of a function. If a function
f(n) is defined ©(g(n)) it means that f(n) grows at a rate that is at most as fast as AND at

least as slow as g(n) as n — oco.

Another definition for ©-notation is as follows:

O(g(n)) = {f(n) | f(n) € O(g(n)) A f(n) € Q(g(n))} = O(g(n)) N Q(g(n)) (1.7)

.4. Find ©-notation for f(n) := 27n?% + 16n.
Q

If a function f(n) is defined as ©(g(n)) then: ¢; - g(n) < f(n) < co - g(n).

Page 5 of

Let ¢; € (0,27], ca > 27 and g(n) = n?

soerg(n) < f(n) <ez-g(n)
. -n?2<2Tn? +16n < Co -n?

o (e —27)n? < 16n < (cy — 27)n?

The first inequality (¢; — 27)n? < 16n holds true ¥ n > 0.

The second inequality 16n < (co — 27)n2 can be further evaluated as follows:

2160 < (cp — 27)n?
son((ea —27)n—16) >0

e |0
o 02—277

Thus, for ¢; € (0,27], ca > 27, ng > and g(n) =n?, | f(n) € ©(n?)|. (Ans.)

Coy — 27
Q.5. Find ©-notation for f(n) = 5n3 +n? + 3n + 2.

If a function f(n) is defined as O(g(n)) then: ¢; - g(n) < f(n) < cg - g(n).

Let us find the value of g(n) for the first inequality ¢; - g(n) < f(n). Let ¢; € (0,5] and

g(n) = n3.

soer-g(n) < f(n)

. -nd < 5n% +n? +3n+2

(e =5)n® <n?+3n+2
which is true V n > 0. Thus, f(n) € Q(n?).

Now let us find the value for g(n) for the second inequality f(n) < cq - g(n).

5n® +n® +3n+2 <50 +n®+3n+n Vn(n > 2)
<5n® 4+ n? 4 4n
5n3 + n? 4+ 4n < 5n° + n? + n? Vn(n > 4)
< 5n® 4 2n?
5n3 4+ 2n? < 5n 4 nd Vn(n? > 2n?) = Vn(n >2)
< 6n°
o f(n) <6n® (Fla<b)A(b<c) = (a<c))

Thus, for all n > 2, f(n) < cn®, with ¢ = 6. Thus, f(n) € (’)(n3).

Since f(n) € Q(n?®) and f(n) € O(n?),| f(n) € O(n?) | (Ans.)

1.4 Solving Recurrences

Recurrence relations are relations of an indexed variable which involve the presence of the same

variable but with a lesser index. The elements of such a relation form sequences, conversely a

Page 6 of

recurrence relation may also be used to denote a sequence.
f(ai) k>i>ko
Co k= ko

A recurrence relation of an indexed variable ay, is defined as follows: aj =

There are various different methods to solving a recurrence relation, ket us have a look at some
of them.

1.4.1 Substitution Method

The first method of solving a recurrence relation is to constantly substitute the “lesser” version

of the variable recursively until we reach the base case.

e.g. Suppose we have been given a recurrence relation as follows:

3ap_1+1 Vk>1
2 k=1

ap =

To solve this recurrence relation, we first write the relation: ay = 3ar_1 + 1.

Now upon constant backtracking of the a;_1 term:

ap =3arp_1+1
=3Bak—2+1)+1=9a,_2+1+3
=9Bak—3+1)+1+3=27a,_3+1+3+9

) i \) Noticing a pattern
ap = 37'04]@,1‘ + ZT:l 3T71

We need to perform this operation until we reach the base case, i.e., the term a; appears in
the above equation, this occurs when the value of k —i=1 — i=k — 1.

ap =35 "tay + Y2 3
=3F124 (14+3+3%+...+3672)

k=1 _q > k-1 terms in the sum
=31241 ——
+ 3—-1
3k_12 k—1 _ 1
ap = + 9
k—1 _ 1

(Ans.)

The recurrence relation equates out to | ax = 312 4 5

e.g. Suppose we have been given a recurrence relation as follows:

apa/2 k=2">1
1 k=1

ap =

To solve this recurrence relation, we first write the relation: ax = ay/2/2.

Page 7 of

Now upon constant backtracking of the ay /o term:

ap = ap)2/2
= ak/4/4
= aj/s/8

) 2 Noticing a pattern
ap = ak/zi/QZ

We need to perform this operation until we reach the base case, i.e., the term a, appears in
the above equation, this occurs when the value of k/2! =1 = i = Igk.
ap = a1 /2'8k
= al/k
=1/k

The recurrence relation equates out to . (Ans.)

1.4.2 Recursion Tree

al'(n/b)+ f(n) n>1
Consider the following recurrence relation; T'(n) = (n/6) + f(n)

1 n=1
T(n) Level 0: T(n)
T(n/b) T(n/b) Level 1: aT(n/b) + f(n)
\
T(n/¥?) T(/V?) - T@/0*) T(n/t?) Level 2: a®T(n/b%) + f(n) + af(n/b)
T(i) ;(1) T(T) 5(1) Level k: akT(1)v+ S al f(n/bl)

where k = log, n, this is derived from the fact that at the k** level, the value of n/b* becomes 1.

1.4.3 Master’s Theorem

From the above recursion tree, it follows that:

log, n—1
T(n) =n%" - T(1)+ Y. aZf(bﬁ) (1.8)
=0

Depending on the value of a, b and f(n), a few results have been already derived. They are as

follows:

Page 8 of

O(n'os?) f(n) € O(nlos(<)
T(n) € § ©(n'& “logi ™ n) f(n) € O(n'9(logh n)
O(f(n)) f(n) € QB DF=) Acyeg

where c,e4 is the regularity condition given as af(n/b) < cf(n); where ¢ < 1

Derivation of Master’s Theorem: Case 1
From eq. (1.8), T(n) = n'os»a + Ziozgé’ "Ll f(n/b)

7 f(n) € O(nloe(@=2)

log, n—1 log, n—1
a’f(n/bz) < Z ai(n/bi)logb a—e
=0 =0
log, n—1 ai
log, (a)—e
< can et Zo pi(logy, (a)—¢)
i=

logyn=1 " ipie
log, (a)—e E
< cn b -
- logy, (a))i
iz (bm)
log, n—1 aibia

< ClnIOgb(a)_E Z pr

=0
log, n—1
<cplor(@=e N e
=0
be(logb n) _ 1
< Clnlogb(a)—s . 1)57_1
gt) n®—1
Z a'f(n/b") < amogb(a)—sﬁ
1=0 -
nt —1 ne c
C17"L10£c>rb(a)_‘E e —1 < Clnlogb(a)_sﬁ - bs%l Sl
T(n) < @ nlogs(a) + nlog, a

-1
T(n) € O(n'°&+9)

Page 9 of

Derivation of Master’s Theorem: Case 2
From eq. (1.8), T(n) = n'ogf + S21%8 "1 gi f(n /bi)

“ f(n) € ©(n'% *log) n)

log, n—1 log, n—1 log, n—1
sen Y di (/)R logy (n/b) < Y dlf(n/b') <o a’(n/b")'°% “logk (n/b)
=0 =0 =0
log, n—1 i log, n—1 log, n—1 i
. ogy a k i % og, a k
e’ Clogy (n/b) D o< Y alf(n/b) < con® logy (n/b) Y s
=0 =0 =0
logb n—1 i log, n—1 log, n—1 al
log, a k, i % log, a k, k
cyn 8 (logb n — logy) blogba)z < Z a'f(n/b") < con o8 (logb n — logy b) , [ToE o)
i=0 i=0
log, n—1 log, n—1 log, n—1
c1m!8 @ (logb n— 1) Z (a'/a") < Z a'f(n/b') < conloer® (1oglg n— 1) Z (a’/a")
=0 =0 =0
log, n—1 log, n—1 log, n—1
cLenlogre (logf n— 1) 1< Z a'f(n/b') < conloer® (log’,f n— 1) 1
=0 =0 =0
log, n—1
cinlogr @ (loglg+1 n — log, n) < Z a'f(n/b') < conloer® (1og’§+1 n — log, n)
=0
log, n—1
nlogb a + clnlogb a (10glg+1 T — 1Ogb n) < nlogb a + Z alf(n/bl) < nlogb a + CinOgb a (log§+1 n— logb n)
=0

nlogv @ 4 ¢ plogy @ <loglg+1 n — log, n) < T(n) < nlo8ra 4 ¢oplossa <log§f+1 n — log, n)

T(n) € © (nlogb @ Joghtt n)
In most cases, the value of k is 0. Thus, T'(n) € © (n'°% *log, n)

Derivation of Master’s Theorem: Case 3

From eq. (L8), T(n) = n'o8 @ + 2% " 4l f(n/b')
And thus we prove, T'(n) € Q(f(n)).

1.5 Algorithm Design Techniques

1.5.1 Implementation
o Recursion or Iteration
e Procedural or Declarative
e Serial or Parallel
e Deterministic or Non-Deterministic

+ Exact (optimal) or Approximate (NP-Hard)

1.5.2 Design

o Greedy

e Divide and Conquer

Page 10 of

e Dynamic Programming (DP)
e Linear Programming

¢ Reduction

1.5.3 Other Classifications
o By Research Area (Search, Sort, String, Graph)
e By Complexity
e Randomized Algorithm

e Branch and Bound and Backtracking

1.6 Sorting Algorithms

1.6.1 Selection Sort

Selection sort is a sorting algorithm that sorts an array by repeatedly swapping the minimum

element in the unsorted part with the first unsorted element.

For example, consider sorting the following array in ascending order:
[11, 9, 5, 7, 4]

The sorted array must look like
4, 5, 7, 9, 11]

Here is how the selection sort algorithm works for sorting an array in ascending order:

Pass 1 We claim that the minimum element is 11. We will search for any element less than 11

in the rest of the array, and if it exists, swap it and 11.

11 9 5 7 4 Minimum: 9
| I
X
11 9 5 7 4 Minimum: 5
X
11 9 5 7 4 Minimum: 5
v
11 9 5 7 4 Minimum: 4
e — |
X

Thus, the array obtained after the first pass is [4,9,5,7, 11].

Pass 2 We start from the first element of the unsorted array, i.e. 9 and claim it as the minimum.

We shall then search for any element in the unsorted that may be lesser than 9, and

Page 11 of

swap it with 9.

4 9 5 7 11 Minimum: 5
| I |
X
4 9 5 7 11 Minimum: 5
v
4 9 5 7 11 Minimum: 5
v

Thus, the array obtained after the second pass is [4,5,9,7, 11].

Pass 3
4 5 9 7 11 Minimum: 7
| I—|
x
4 5 9 7 11 Minimum: 7
v

Thus, the array obtained after the third pass is [4,5,7,9, 11}@
Pass 4

4 5 7 9 11 Minimum: 9

Thus, the array obtained after the fourth pass is [4,5,7,9,11].

Therefore, the final array obtained after selection sort is | [4,5,7,9,11] |

Algorithm 1: Selection Sort Algorithm

Input: Array A of n elements
Output: Array A sorted in ascending order

1 fori=1ton—1do

// Assume the ith element is the minimum
2 min__index < i;
3 for j=i+1tondo
4 if A[j] < A[min_index] then
5 ‘ min_index < j;
6 end
7 end
// Swap the found minimum element with the ith element
8 if min_index # i then
9 temp + Ali];
10 Ali] + A[min_index];
11 A[min__index] +temp;
12 end
13 end

The time complexity of selection sort is (’)(nQ). The space complexity of this algorithm is O(1).

2 Although the array appears to be sorted, the algorithm still needs to complete all iterations.

Page 12 of

1.6.2 Insertion Sort

Insertion sort is a sorting algorithm that sorts an array by trying to “insert” a certain element

in its correct place by comparing it with the all elements that are before(or after) it.

For example, consider sorting the following array in ascending order:
[11, 9, 5, 7, 4]

The sorted array must look like
4, 5, 7, 9, 11]

Here is how the insertion sort algorithm works for sorting an array in ascending order:

Pass 1
11 9 5 7 4 Shift
| I
x
Thus, the array obtained after the first pass is [9,11,5,7,4].
Pass 2
9 11 5 7 4 Shift
| I
X
9 5 11 7 4 Shift
| AN
x
Thus, the array obtained after the second pass is [5,9,11,7,4].
Pass 3
5 9 11 7 4 Shift
| S — |
x
5 9 7 11 4 Shift
| AN |
x
5 7 9 11 4 Do not shift
v
Thus, the array obtained after the third pass is [5,7,9,11,4].
Pass 4
5 7 9 11 4 Shift
| A
x
5 7 9 4 11 Shift
| N
x
5 7 4 9 11 Shift
A
x
5 4 7 9 11 Shift
| AN
X

Thus, the array obtained after the fourth pass is [4,5,7,9,11].

Therefore, the final array obtained after insertion sort is | [4,5,7,9,11] |

Page 13 of

The best-case time complexity of insertion sort is O(n) and worst-case time complexity is (’)(n2).

The space complexity of this algorithm is O(1).

Algorithm 2: Insertion Sort Algorithm

Input: Array A of n elements
Output: Array A sorted in ascending order
1 for i =2 ton do
2 key < Ali;
3 j—i—1;
// Shift elements of A[l...i— 1] that are greater than key to one
position ahead
4 while j > 0 and A[j] > key do

5 Alj +1] « Aljl;
6 j—=7—-1L
7 end

// Insert the key at the correct position
8 Alj + 1] « key;

9 end

1.6.3 Heap Sort

Heap sort is a sorting algorithm that sorts an array by making use of the characteristic property
of the heap data structure. We repeatedly find the maximum element of an array, place it at

the end and consider the final elements to be sorted.

Heaps

A heap is a special type of binary tree which has the characteristic property that the children
of a particular node have values which are lesser than the value of their parent. Such a heap is

called a maz-heap since the maximum element is at the root.

A min-heap is a heap where the children have values which are greater than the value of the

parent.

We will almost talk exclusively about maz-heaps in this section until specified otherwise.

Relation between Arrays and Trees

A tree can be represented using a single array, this is done by making clever use of indices of
the array. The root of the tree is the first element in the array, all the subsequent children of a

node at index i are located at the (2i)"" and (2 + 1) positions in the array.

a

Page 14 of

Algorithm 3: Build Max-Heap

Input: Array A of length n

Output: A max-heap represented in the array A
1 n < length(A);
2 for i + |n/2| downto 1 do
3 ‘ Max-Heapify(A, i);

4 end

Algorithm 4: Max-Heapify

Input: Array A, index i
Output: The subtree rooted at index 7 is a max-heap
11+« 2i// left child
r<42i+1// right child
if | < heap-size(A) and A[l] > Ali] then
‘ largest < ;

N

end
else
‘ largest < 1;
end
if r < heap-size(A) and A[r] > Allargest] then

10 ‘ largest < r;

© 0w g9 o o oA~ W

11 end

12 if largest # i then

13 Swap A[i] and Allargest];
14 Max-Heapify(A, largest);

15 end

Algorithm 5: Heap Sort

Input: Array A of length n
Output: Sorted array A
1 Build Max-Heap(A);
n < length(A);
3 for i < n downto 2 do
Swap A[1] with A[é];
heap-size(A) < heap-size(4) — 1;
6 Max-Heapify(A, 1);

7 end

(M)

'

%]

For example, consider sorting the following array in ascending order:
1, 4, 2, 8, 5, 7]
The sorted array must look like
1, 2, 4, 5, 7, 8]

Here is how the heap sort algorithm works for sorting an array in ascending order:
Build the Heap

Page 15 of

1
4 2 5 7
8) 7 4 1 2
1, 4, 2, 8, 5, 7] 8, 5, 7, 4, 1,
Pass 1
7
5 2
®
4 1 8
[7, 9, 2, 4, 1, 8]
Thus, the array obtained after the first pass is [7,5,2,4, 1, 8].
Pass 2
5, 4, 2, 1, 7, 8]
Thus, the array obtained after the second pass is [5,4,2,1,7, 8].
Pass 3
4
1/\2
v v e
5] / 8

[4, 1, 2, 5, 7, 8]

Thus, the array obtained after the third pass is [4,1,2,5,7, 8].

Page 16 of

Pass 4

e
-~

2,

Thus, the array obtained after the fourth pass is [2,1,4,5,7,8].

Pass 5
1
e
2 7 N 4
o L]
g/ » ®
5 7 8
[17 27 47 57 77 8]
Thus, the array obtained after the fifth pass is [1,2,4,5,7, 8].
Pass 6
1
[]
9 7 4
o L]
'3 e ®
5 7 8
1, 2, 4, 5, 7, 8]

Thus, the array obtained after the sixth pass is [1,2,4,5,7, 8].

Therefore, the final array obtained after heap sort is | [1,2,4,5,7, 8] |.
The time complexity of heap sort is O(nlgn). The space complexity of this algorithm is O(1).

Page 17 of

Chapter

Graph Algorithms

2.1 Graphs
A graph G = (V, E) is defined as a set of nodes or vertices V' connected to each other by edges
FE where ECV x V.
A graph can be:
e Directed or Undirected
e Cyclic or Acyclic
e Weighted or Unweighted
e Connected or Disconnected
o Bipartite
o Multigraphs
o Hierarchical (Trees)
o Unit-degree (Linked Lists)

D

Figure 2.1: An unweighted undirected acyclic and connected graph

Graphs can be used in modelling real world networks such as electrical circuitry, motor roadways,

computer networks, etc.

Page 18 of

2.2 Elementary Graph Algorithms

Notation

An edge from vertex u to vertex v is denoted as the pair (u,v) € E. For an undirected graph,

(u,v) € E < (v,u) € E (Holy crap symmetric relation).

The set of all vertices connected from vertex u is given by Adj[u].

Adju] = {v € V| (u,v) € E}

A vertex v € V might have certain attributes, which are denoted using the dot (.) notation.
e The current parent (previous vertex) of v is denoted as v.m.
e The current shortest distance of v from some source vertex is denoted as v.d.

o The current color (WHITE, GRAY or BLACK) of v relevant to a graph traversal is denoted

as v.color.
e The finishing time of v in a graph traversal is denoted as v.f.

e The current minimum weight of any edge connecting v to any vertex in the graph is

denoted as v.key.
For directed graphs, a weight function w : E — R is used to map each edge to a weight.

If an edge does not exist, we can store a NIL value as its corresponding entry, though for many

problems it is convenient to use a value such as 0 or co.
w(u,v) = NIL <= (u,v) ¢ E

2.2.1 Representation of Graphs

Consider the following graph:

C

Figure 2.2: An unweighted directed cyclic and connected graph

Adjacency Matrices

An adjacency matrix [a;;] is a boolean matrix of order |V| x |V| defined as follows:

1, if (i,j) e E
[aij] = ,
0, otherwise

Page 19 of

For example, the adjacency matrix of the graph in fig. would be:

o

=
= = O
o = O
o O =

The space requirements of an adjacency matrix representation would vary as O(|V|2).

Adjacency Lists

For an adjacency list representation, we maintain a linked list of vertices for each vertex that
stores the vertices that are connected from that vertex. When a new edge is added to the graph,

the destination vertex must be appended to the list corresponding to the source vertex.

For example, the adjacency list of the graph in fig. would be:

A:H@
B:~>~>®
C:—>®

The space requirements of an adjacency list representation would vary as O(|E| + |V|).

2.2.2 Depth-First Search

Depth-First Search (DFS)

Algorithm 6: Depth-First Search (DFS)
Input: Graph G = (V, E)

Output: Discovery and finishing times of all vertices

1 foreach vertex u € V do

2 u.color < WHITE;
3 w.T 4— NIL;
4 time + 0;

5 foreach vertez u € V do
6 if u.color = WHITE then
7 L DFS-Visit(u);

Page 20 of

Algorithm 7: DFS-Visit(u)

1 u.color < GRAY;

N

time < time + 1;

u.d < time;

foreach vertez v € Adjju] do
if v.color = WHITE then

g o A~ W

VT 4
DFS-Visit(v);

o]

u.color < BLACK;
9 time < time + 1;

10 u.f < time;

2.2.3 Breadth-First Search

Breadth-First Search (BFS)

Algorithm 8: Breadth-First Search (BFS)

Input: Graph G = (V, E), source vertex s
Output: Shortest path from s to all other vertices
1 foreach verter v € V' \ {s} do
2 u.color < WHITE;
3 u.d + 00;

4 U.T 4 NIL;

5 s.color <— GRAY;
s.d < 0;

8.7 < NIL;

Q<+ 9
Enqueue(Q, s);
10 while Q # @ do

11 u < Dequeue(Q);

12 foreach vertex v € Adjlu] do
13 if v.color = WHITE then
14 v.color < GRAY;

15 v.d +— u.d+1;

16 VLT 4 g

17 Enqueue(Q, v);

18 u.color < BLACK;

2.2.4 Topological Sorting

Algorithm 9: Topological Sort

Input: Directed Acyclic Graph (DAG) G = (V, E)

Output: A topological ordering of vertices
1 Perform DFS on G to compute finishing times u.f for each vertex u;
2 As each vertex is finished, insert it onto the front of a linked list;

3 return the linked list of vertices;

Page 21 of

The time complexity of topological sorting is O(|V| + |E|). The space complexity of this algo-
rithm is O(|V]).

2.2.5 Strongly Connected Components

A subgraph H of a graph G is said to be a Strongly Connected Component (SCC) iff for every

pair of vertices u and v in H.V v is reachable from u and u is reachable from v, i.e.,

Hisan SCCof G < HCGAYue€ HV Yo € HV (u~ v Av ~ u).

We can determine the SCCs of a graph using Kosaraju’s algorithm.

Algorithm 10: Kosaraju’s Algorithm
Input: Graph G = (V, E)
Output: Strongly connected components of G

1 Call DFS on G to compute finishing times u.f for each vertex wu;

2 Compute G (the transpose of G);

3 Call DFS on G, but in the main loop of DFS, consider vertices in order of decreasing
u.f (from the original DFS);

4 Each tree in the depth-first forest of G is a strongly connected component;

The time complexity of Kosaraju’s algorithm is O(|V]+ |E|). The space complexity of this
algorithm is O(|V)).
2.2.6 Trees

An acyclic and connected graph is known as a tree. If a tree is directed, then the graph is known
as a DAG.

Trees are used to represent hierarchical relationships, indicating that the parents “come first”
before the children.

2.3 Spanning trees

Spanning trees of a graph are special trees which contain every node in the graph without forming

any cycles.

D

Figure 2.3: A spanning tree for the graph in fig.

A spanning tree will always have exactly |V| — 1 edges.

A complete graph will have |V||V‘_2 spanning trees (Cayley’s formula).

Page 22 of

2.3.1 Minimum spanning trees

A Minimum Spanning Tree (MST) is a special spanning tree where the sum of the all the edges

which have been included is the minimum possible for that particular graph.

For an unweighted, graph any spanning tree is a valid minimum spanning tree as well, as the

total weight of the tree will always be |V| — 1 no matter what.

2.3.2 Generic algorithm

The generic algorithm to find the MST is as follows:

Algorithm 11: Generic MST
1 T+,

2 while T does not form a spanning tree do
3 Find an edge (u,v) which is safe for T
T+ TU{(u,v)};

'S

5 return 7T

A safe edge is an edge which maintains the loop invariant before and during the execution of

the loop.

2.3.3 Kruskal’s algorithm

This algorithm is an example of a greed algorithm as we include the edges the least possible

weight without forming a cycle.

Algorithm 12: Kruskal’s Algorithm
Input: Graph G = (V| E), edge weights w(e) for all e € F
Output: A minimum spanning tree T

1T+ @

2 Sort the edges of E into non-decreasing order by weight w;
3 foreach edge (u,v) in the sorted edge list do

4 if u and v are in different components then
5 L Add edge (u,v) to T;

=

Union the sets containing u and v;

7 return T

We make use of the disjoint set data structure to make sure that no cycles are formed at the

inclusion of a new edge into the tree.

The best-case time complexity of Kruskal’s algorithm is O(|E|lg|E|) and the worst-case time-
complexity is O(|E|1g|V|). The space complexity of this algorithm is O(|E| + |V]).

For example, consider finding the MST of the following weighted graph:

Initialise the tree

T=1{}

Sort the edges

1Refer the chapter regarding greedy algorithms.

Page 23 of

©
@ @ @
Eh = {(1,3)7(2,4),(1,6),(2,6),(5, 7),(1,2),(3,5), (4, 7),(4,6),(677),(3,6)}
weight 1 1 2 2 2 3 3 3 4 5 6
Iterating
Pass 1
T={(1,3)}
O—® 6
©
@ @ @
Pass 2
T={(1,3),(2,4)}
O——O ©
©
®
Pass 3
T = {(173)’ (2a 4)7 (L 6)}
—® ©®
©
®
Pass 4

T= {(13 3)7 (274)ﬂ (176)7 (2a 6)}

Page 24 of

Pass 5
T =1{(1,3),(2,4),(1,6),(2,6),(5,7)}
Pass 6
The edge (1,2) forms a cycle so it is not included.
Pass 7

T = {(173)’ (2a4)7 (1’ 6)5 (276)v (5a 7)7 (3v 5)}

|T| = 6 = |V| — 1. Therefore, the algorithm can stop now. Alternatively, we can say that all

subsequent passes (Passes 8, 9, 10, 11, 12) lead to an edge which causes the formation of a

a spanning tree has been formed |.

cycle. Hence, we can safely say that

The cost of the above MST is 1 +2+2+1+3+2=11.

(Ans.)

Page 25 of

2.3.4 Prim’s Algorithm

Algorithm 13: Prim’s Algorithm
Input: Graph G = (V, E), edge weights w(e) for all e € E, starting vertex r

Output: A minimum spanning tree T’

Jury

foreach vertex u € V do
L u.key < oo;

(M)

w

U.TT 4 NIL;

r.key < 0;
Q<+ 9 // Initialise the Priority Queue

foreach vertex u € V do
L Q-insert(u);
while Q # @ do

4 o o a

®

u + Extract-Min(Q);
10 foreach vertez v € Adjju] do
11 if v e Q and w(u,v) < v.key then
12 VT4
13 L v.key + w(u,v);

14 return {(v,v.7) : v € V,v.7m # NIL};

The following three-pointed loop invariant is followed for every iteration:
1. A={(v,vm) |[veV\{rtuQ@)}.
2. The vertices already placed into the minimum spanning tree are those in V/Q.

3. For all vertices v € Q, v # NIL = v.key < oo A v.key = w(eg) where eg = (v,v.7) |eg =
light edgeE] connecting v to some vertex already placed into the minimum spanning tree.

The best-case as well as worst-case time complexity of Prim’s algorithm is O(|E|lg|V|). The
space complexity of this algorithm is O(|E| + |V|).

For example, consider finding the MST of the following weighted graph:

Assuming r = A

After inserting all elements in the priority queue @)

2Kabhi padhai bhi kar lo.

Page 26 of

After pass 1

After pass 2
Q= [D, c, E}

2 3 00

No new additions to the tree as an edge of greater weight is being introduced.

After pass 3

After pass 4

Page 27 of

After pass 5

Q=9

No new additions to the tree as all elements in adjacency list of E are out of Q.

Since, the priority queue is empty, we can stop the algorithm.
‘ The MST has been formed successfully ‘ The cost of the above MST is 1 +2 4 3 + 7 = 10.
(Ans.)

2.4 Shortest Path Algorithms

2.4.1 Single-Source Shortest Path Algorithm

Dijkstra’s Algorithm

Algorithm 14: Dijkstra’s Algorithm
Input: Graph G = (V, E), edge weights w(e) > 0, starting vertex s

Output: Shortest path distances from s to all vertices

1 foreach vertex u € V do
2 u.d + 00;
3 w.T 4 NIL;

4 s.d <+ 0;

o

QR+~ // Initialise the Priority Queue

6 foreach vertex uw € V do

7 t Q-insert(u);

8 while @ # @ do

9 u + Extract-Min(Q);
10 foreach vertex v € Adjlu] do
11 if v.d > u.d + w(u,v) then
12 v.d + u.d+ w(u,v);

13 VT W
14 Q-Reduce-Key (v, v.d);

The best-case time complexity of Dijkstra’s algorithm is O(|V|1g|V|] + |E|lg|V]) and the worst-
case time-complexity is O (|V|2) . The space complexity of this algorithm is O(|V?|) or O(|E| + [V])
depending on the data structure used.

Page 28 of

For example, consider applying Dijkstra’s Algorithm on the following graph with the starting
vertex s = A:

Q=[4, B ¢ D B

0 e’} e’} o %)
@ Element | Distance | Parent
A 0 NIL
@ @ B 00 NIL
C o0 NIL
D 00 NIL
@ E 00 NIL

After pass 1

Qz[B, c. D E

1 4 oo [e's)

Element | Distance | Parent
A 0 NIL
B 1 A
C 4 A
D 0 NIL
E 00 NIL

After pass 2

e=p. £ ¢
Element | Distance | Parent
A 0 NIL
B 1 A
C 4 A
D 3 B
E 3 B
After pass 3
Q=g ¢

No changes as the condition to perform relaxation does not occur.

Page 29 of

After pass 4

o-[q

4

No changes as the condition to perform relaxation does not occur.

After pass 5

Q=2

No changes as the adjacency list of C' is empty.

Since, the priority queue is empty, we can stop the algorithm. The following table states the

shortest distances from A to every other node.

Parent

Element | Distance
A 0
B 1
C 4
D 3
E 3

Note

NIL

(Ans.)

Sujlov s e

When there exist negative weight cycles, one can just travel along that cycle and get an even

lesser distance. This can go on forever. Hence, ANY shortest distance algorithm is incorrect in

such cases.

Bellman-Ford Algorithm

Algorithm 15: Bellman-Ford Algorithm

Input: Graph G = (V, E), edge weights w(e), starting vertex s

Output: Shortest path distances from s to all vertices, or report if a negative-weight

cycle exists

1 foreach vertez u € V do
u.d — 00;
3 L w.T 4 NIL;
4 s.d + 0;
fori=1to |[V|—-1do
foreach edge (u,v) € E do
if v.d > u.d + w(u,v) then
L v.d + u.d+ w(u,v);

VT U

(M)

%]

(=)

© w N

10 foreach edge (u,v) € E do
11 if v.d > u.d + w(u,v) then

12 L return “Negative-weight cycle exists”;

The best-case as well as worst-case time complexity of the Bellman-Ford algorithm is O(| E||V]).

The space complexity of this algorithm is O(|V]).

figure

Page 30 of

2.4.2 All-Pairs Shortest Paths Algorithms
All-Pairs Shortest Paths Algorithm

All-Pairs Shortest Paths (APSP) algorithm.

Consider the ways to get to a certain node from a certain predefined node in a given graph.

10 /

In the above graph, the current path from 1 to 3 has a weight of 10, with one edge being
traversed. If we somehow increase the number of edges to 2, then we can go from 1 to 2 and
then 2 to 3 and have a reduced path of 8 with 2 edges being traversed.

The above procedure is known as the “Extend-Shortest-Path” Procedure. The algorithm for it

is as follows:

Algorithm 16: Extend-Shortest-Path
Input: L") =Matrix of shortest paths with r edges, W=Weight matrix containing the

weight of all the edges
Output: L+ =Matrix of shortest paths with r edges
1 if lg-) < lg,:) + wy; then

2 ll(;+1) — li(z) + W5

// Extend the shortest path
3 else
4 lg-ﬂ) — lg-);

// Keep the same path

We repeatedly extend the shortest path for |V| times. As the maximum number of edges we
need to cross to get to a particular node is |V|— 1. The last extension is performed to make sure

that we have covered self paths as well.

Page 31 of

Algorithm 17: APSP
Input: Weight Matrix W
Output: M = The shortest path matrix containing where m;; is the weight of the

shortest path from ¢ to j
1 L+ o, M+ @
2 for i =1 to |V| do
3 for j=1to |V| do
4 lij = 0if (i = j) else oo;
L // Initialise L(©

5 for r =1 to |V]| do

6 | fori=1to |V]do
7 for j=1to |V|do
8 for k=1 to |V| do
9 M <+ Extend-Shortest-path(L, W);
L // Alternatively my; < min(l;;, lix + wi;)
10 L+ M,

11 return M;

The time complexity of the APSP algorithm is O <|V|4). The space complexity of this algorithm
is o(w\?).

Consider we have to apply the APSP algorithm on the following graph:

oo H 3 2
oo oo oo 4
W= 00 00 00
© oo 1 o
Before Iterating
0 oo oo o0
10 _ oo 0 oo o
oo oo 0 oo
© oo oo 0
After pass 1
0 5 3 2
T _ | 0 oo 4
o oo 0 oo
o oo 1 0
After pass 2
0 5 3 2
1™ _ oo 0 5 4
o oo 0 o
o oo 1 0

Page 32 of

After pass 3

L3 = @ =

_ o Ot W

2
4
00
0

8 8 8 <
g3 8 o w

After this, no extensions lead to a shorter path for any of the pairs, hence the algorithm is
complete and we can stop. L(3) contains the required single source shortest path lists for every

starting node. (Ans.)

Floyd-Warshall algorithm

Although, we perform a similar computation here as in the generic APSP algorithm, the intuition
behind this algorithm is a bit different.

In this algorithm, the values dgf) represent the distance to be travelled from node ¢ to node j by
somehow travelling to node k first and then to j from k. This covers all the different possibilities
to get from 7 to j, including the direct path as well. We then V these possibilities to get the final

answer. (Remember Discrete Structures).

But the above algorithm only helps us to determining the existence of a path. Instead we use the

min operation to find the minimum path instead of using the V operator defined for booleans.

Algorithm 18: Floyd-Warshall Algorithm
Input: Graph G = (V, E), weight matrix W = (w;;) for all 4, j
Output: Shortest path distances between every pair of vertices

1 n+ |V
2 for k=1 ton do
3 for i =1 to n do

4 for j =1 tondo
| dli]ls] « min(dli][5], d[i][K] + d[k][5]);

[

6 return d;

The time complexity of the Floyd-Warshall algorithm is O(\V\?’). The space complexity of this
algorithm is (9<|V|2>.

a® =)i k=0,
T Lmin (S0 Y YY), k0
0 _ NIL, =7V w;; = 00,

i, i;éj/\wij<oo

(k—1) (k—1) (k—1) (k—1)
G, diy 7 <dy, " +dy

e al Y s a Y Y

For example, consider the following graph:

Page 33 of

0 3 8 oo —4 NIL 1 1 N 1
o 0 oo 1 7 NIL NIL NIL 2 2
D'’=]cc 4 0 oo o I°= |NIL 3 NIL NIL NIL
2 oo -5 0 o 4 NIL 4 NIL NIL

|0 oo oo 6 0] INIL NIL NIL 5 NIL]

[0 3 8 oo —A4] NL 1 1 NIL 1]
o 0 oo 1 7 NIL NIL NIL 2 2
D'=]lc 4 0 o o O'= |NIL 3 NIL NIL NIL
2 5 -5 0 =2 4 1 4 NIL 1

o0 oo oo 6 0] INIL NIL NIL 5 NIL]

[0 3 8 4 —4] N 11 1]
oo 0 oo 1 7 NIL NIL NIL 2 2
D’=lcc 4 0 5 11 = [N 3 NIL 2
2 5 -5 0 -2 4 1 4 NIL 1

o0 oo oo 6 0| INIL NIL NIL 5 NIL]

[0 3 8 4 —4] N 11 1]
oo 0 oo 1 7 NIL NIL NIL 2
D’=lcc 4 0 5 11 =[N 3 NIL 2
2 1 -5 0 =2 4 3 4 nNiL 1

(00 oo oo 6 0| INIL NIL NIL 5 NIL]

[0 3 —1 4 —4] NI, 1 4 1]
30 -4 1 -1 4 NIL 4 1
D'=17 4 0 5 3 m =14 NI 2 1
21 -5 0 =2 4 4 NiL 1

8 7 1 6 0] | 4 4 5 NIL]

0 3 -3 2 —4] N 1 40 50 1]
30 —4 1 -1 4 NIL 2 1
D°=14 4 0 5 3 m° =14 NI 21
21 -5 0 =2 4 3 4 NiL 1

8 7 1 6 0] | 4 3 4 5 NIL]

We have completed all the 5 iterations, the matrix D® contains the single source shortest path

lists from a node i in it’s i** row. Similarly, the corresponding row of II° contains the required

parent lists for the single source shortest paths. (Ans.)

Page 34 of

Chapter

Divide and Conquer

The divide and conquer approach is a powerful strategy for designing asymptotically efficient
algorithms. A famous example of the divide and conquer algorithm is merge sort, an asymptot-

ically efficient sorting algorithm.

In the divide and conquer method, we are given an instance of a problem and we solve it
recursively until it becomes small enough (base case) that we know the answer directly. In the

recursive cases, we solve the problem as follows:

1. Divide the problem into one or more sub-problems that are smaller instances of the same

problem.
2. Conquer the sub-problems by recursively solving them.
3. Combine the sub-problems to form a solution to the original sub-problem.

We have seen how to solve the recurrences using various different methods, we will use those
methods to analyse the time and space complexities of the algorithms discussed in the first

chapter.

3.1 Binary Search

The purpose of a searching algorithm is to find a specific element present in a data Structureﬂ

The naive linear search algorithm used in appendix has asymptotic time complexity of ©(n)
in the average and worst case scenario. There exists a more efficient algorithm for searching

based on the divide and conquer technique called binary search.

IRead more about the searching problem in appendix

Page 35 of

Algorithm 19: Binary Search - Recursive (BS-Recursive)

Input: Sorted array A of n elements, Element b to be searched, low and high- the
index of smallest and largest element of subarray.
Output: Index of bin A
1 if low > high then
2 L return —1;
3 mid < (low + high) />;
4 if Almid] = b then
5 t return mid,;
6 else if A[mid] < b then
7 L return BS-Recursive(A, b, mid + 1, high);

8 else
t return BS-Recursive(A4, b, low, mid — 1);

©

The initial call to BS-Recursive(A, b, 1,n) provides us with the index of b.

3.1.1 Why this specific algorithm

The above algorithm seems pretty arbitrary in terms of the method used and it is not visible at

first glance how it relates to the divide and conquer method.

Consider line [4] of the above binary search algorithm, we compute the index of the middlemost
element of the array and compare it with the element to be found. If the middlemost element

of the array is the required element b, then we directly return mad.

If this does not occur then we compare the middlemost element and b depending on their
difference, we narrow down the position of b to the left or right subarray of A. We
are allowed to narrow the position down because we know that A is actually a sorted array.
Therefore, if b is larger than the middlemost element then we can say that it is in the right

subarray of A. Otherwise it is in the left subarray of A.

3.1.2 Divide and Conquer

1. Divide the array into half

2. Conquer the subarray by finding the position of the element in this subarray.
There is no combine step as we only have one recursive call to a smaller sub-problem.

Another popular variation of the binary search algorithm is as follows where we use tail recursion

elimination to make use of an iterative statement:

Page 36 of

Al

gorithm 20: Binary Search

I

nput: Sorted array A of n elements, Element b to be searched

Output: Index of bin A
1 high < n, low < 1;
2 while high > low do

\‘low + hith
3 mid + | ——|;
2

4 if A[mid] =b then

5 L return mid;

6 | else if A[mid < b then
7| | high + mid—1;

8 else

9 L low + mid+1;

10 return -1;
The binary search algorithm has time complexity O(lgn) and the space complexity is O(lgn)

(for the recursive algorithm) and O(1) (for the iterative algorithm).

For example, consider searching for the element 5 the following array:

Pass 1

Pass 2

Pass 3

3.2

3.3

1, 2, 4, 9, 7, 8]

[1

)
low

2, 4, 5 T 8 |
mid high

The value of mid element is less than the value to be searched (5), so search the right

sub-array.

1, 2 4 5 7 8]

low’ mid7 high

The value of mid element is more than the value to be searched (5), so search the left

sub-array.

L, 2, 4 7, g

low, mid, high7

The value of mid element is equal to the value to be searched (5), so return the current

value of mid(4).

Quick Sort

Merge Sort

Page 37 of

Appendix

Important Algorithms

A.1 Searching

The purpose of a searching algorithm is to find a specific element present in a data structure.

Usually, the problem is stated as follows:

Given a sequence of elements, (a1, a2,as, -+ ,ay), find the position of an element b

in the sequence.

A.2 Linear Search

To solve this problem, the naive approach would be to search all elements of the array (note that

we will be using fixed length arrays to represent sequences), stopping when we find the required el-

Algorithm 21: Linear Search (Naive approach)

Input: Array A of n elements, Element b to be searched
Output: Index of bin A
1 for i<+ 1tondo

ement. 2 if Afi] =b then

3 ‘ return i;
4 end
5 end

6 return —1;

We can easily analyse the average-case (required element is somewhere close to the middle of

the array) time complexity of the above algorithm as follows.

T(n)=co+co+ - +co

n/2 times

We read about a better sorting algorithm in chapter

Page 38 of

A.3 Sorting

The purpose of a sorting algorithm is to sort a given set of records based on the value of a
particular field present in the record. The values upon which the records are sorted are called

the keys of the record. The remaining fields of the record are known as satellite data.
Usually, the problem is stated as follows:

Given a sequence of elements, (a1, as,as, - -, a,), return it’s permutation (a}, a5, a%, - -+ ,an,),

! !/ !/ /
where a] <a) <afy <---<a,.

A.3.1 Why sorting?

Many computer scientists consider sorting to be the most fundamental problem in the study of

algorithms. There are several reasons:

e An application needs to inherently sort information and prepare results. Example: Banks

need to sort cheques by cheque number.
o Algorithms often use sorting as a key subroutine.

e Sorting is a problem of historical interest leading to development of various different forms

of algorithm solving techniques.

e A non-trivial lower bound for sorting can be proven for sorting. Since, the upper bound
of many sorting algorithms match lower bound asymptotically, we can say that certain

sorting algorithms are optimal.

Page 39 of

Acronyms

APSP All-Pairs Shortest Paths 31-33
BFS Breadth-First Search 21

DAA Design and Analysis of Algorithms 1
DAG Directed Acyclic Graph 21, 22
DFS Depth-First Search 20-22

DP Dynamic Programming 11

Gojo Aaditya Joil 1

MST Minimum Spanning Tree 23, 25, 26, 28
RRG Rupak R. Gupta 1

SCC Strongly Connected Component 22

Page 40 of

TTTTTTT

	Introduction to Analysis of Algorithms
	Algorithms
	Performance of an Algorithm
	Time Complexity
	Space Complexity

	Asymptotic Notations
	O-Notation
	-Notation
	-Notation

	Solving Recurrences
	Substitution Method
	Recursion Tree
	Master's Theorem

	Algorithm Design Techniques
	Implementation
	Design
	Other Classifications

	Sorting Algorithms
	Selection Sort
	Insertion Sort
	Heap Sort

	Graph Algorithms
	Graphs
	Elementary Graph Algorithms
	Representation of Graphs
	Depth-First Search
	Breadth-First Search
	Topological Sorting
	Strongly Connected Components
	Trees

	Spanning trees
	Minimum spanning trees
	Generic algorithm
	Kruskal's algorithm
	Prim's Algorithm

	Shortest Path Algorithms
	Single-Source Shortest Path Algorithm
	All-Pairs Shortest Paths Algorithms

	Divide and Conquer
	Binary Search
	Why this specific algorithm
	Divide and Conquer

	Quick Sort
	Merge Sort

	Important Algorithms
	Searching
	Linear Search
	Sorting
	Why sorting?

	Acronyms

