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Chapter 1

Linear Algebra

1.1 Matrices

A matrix is a rectangular array of expressions, used to represent a mathematical property or object.

Order of a matrix is given by m x n, where m and n represent the number of rows and the number of

columns respectively.
The set of all matrices of order m xn containing elements of a scalar field F is represented by My, xn (F).

For example,

az a2 aiz -+ Qin

ag1 az2 Q23 -+ Q2n
A =

Am1 aAm2 am3 e Amn

1.1.1 Matrix transformations
Transpose

The transpose A | of a matrix A is obtained by switching its rows and columns.

AT = l[ajil Vaj € A (1.1)
If A € Mupyn(F), then AT € M,y (F).
Adjugate

Inverse

The inverse A ! of a matrix A is defined such that their product results in the identity matrix I, which
is discussed further in
AATL=ATTA =1 (1.2)

The inverse can be obtained from the adjugate using the following definition,

Al adj A

= det(A) (13
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The determinant will be discussed further in §1.1.3]

1.1.2 Properties of matrices
Square matrices

If the number of rows of a matrix is the same as the number of its columns, then the matrix is said to

be a square matrix. For example,

ai; Q12 - Qin

Qg1 Q22 -+ Q2n
A =

an1 Qnp2 -°° Onn

Symmetric matrices

Skew-symmetric matrices

Null matrices

Orthogonal matrices

Idempotent matrices

Nilpotent matrices

Diagonal matrices

Identity matrices

1.1.3 Operations on square matrices

Trace

The trace of a square matrix is defined to be the sum of the elements on its leading diagonal.

Mz My2 - Min
Moy Mgy -+ Map o
tr . . ) . =Ty Mo + M3z + -+ My = E mii (1.4)
: : . : —
Mn1 Mn2 e Mnn
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Determinant
Elementary Row Operations

Row Echelon form of a matrix
1.1.4 Linear Dependence of Vectors
1.1.5 System of Linear Equations

1.1.6 Similarity of two matrices

1.2 Vector Spaces

A set V with operations of addition and scalar multiplication over a field F defined on it is called a

vector space if it satisfies the following axioms:

Closure

.VuveV(u+veyV)
2.VveVVAeF (AveV)

Vector Addition
3. VuveV(u+v=v+u)
4. VuvyweV(u+ v+w)=(u+v)+w)
5. 30eVVveV(v+0=v)
6. VveVI(—v)eV v+ (—v)=0)

Scalar Multiplication
7.Vu,ve VVA e F (Au+v) =Au+ Av)
8. VveVVAueF ((A+uv=2Av+puv)
9. Vve VVA peF (An)v = A(uv))
10. 31 eFVveV(lv=v)

1.2.1 Vector Subspaces

(Closure under vector addition)

(Closure under scalar multiplication)

(Commutativity)
(Associativity)
(Existence of neutral element)

(Existence of additive inverse)

(Distributivity over vector addition)
(Distributivity over field addition)
(Associativity)

(Existence of neutral element)

A set W is said to be a subspace of a vector space V over a field T, if itself is also a vector space. Since

V is given to be a vector space, W needs to satisfy only the following axioms:

.0eWwW
2. VuveW(u+veWw)
3. VveWVAeF (AveWw)
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1.2.2 Span
The span of a set of vectors is defined as the set of all linear combinations of those vectors.

n
span (vi,Va, ..., V) = {w|w = ZMViV?\i € R} (1.5)

i=1

1.2.3 Basis

A subset S of a vector space V is said to form a basis for V if span(S) = V. This is verified if the

following is true:
1. S is linearly independent.
2. dim(S) = dim(V)
Therefore, O can never exist in a basis.

Basis vectors are usually denoted by e;, where 1i refers to the i*? basis vector.

1.3 Linear Transformations

A transformation T is a mapping from a vector space V to a vector space W over a field F. A transfor-

mation is said to be linear if it follows the following axioms:

1. T(Ov) = 0w (Origin invariance)
2. VuveV (Tu+v)=T(u) +T(v)) (Linearity over vector addition)
3. Vve VVAEF (T(A)=A-T(v)) (Linearity over scalar multiplication)

1.3.1 Column space

The column space (or image) of a linear transformation T : V — W is defined as the span of all

transformed vectors in the codomain W.

im(T) ={Tv)|veV} (1.6)

The rank of a transformation is defined as the dimension of its column space.

rank(T) := dim(im(T)) (1.7)

1.3.2 Null space

The null space (or kernel) of a linear transformation T : V — W is defined as the set of all vectors in

the domain V that map to the additive identity in the codomain W.

ker(T) = {v € V| T(v) = Ow} (1.8)

The nullity of a transformation is defined as the dimension of its null space.

nullity(T) := dim (ker(T)) (1.9)
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1.3.3 Rank-Nullity Theorem

The rank-nullity theorem states that for a linear transformation T, the sum of the dimensions of its

column space and its null space equals the dimension of the domain.

rank(T) 4+ nullity(T) = dim(V) (1.10)

1.3.4 Inner Product

The inner product is defined as a mapping from a pair of vectors belonging to a vector space to a scalar.

U Vi
U9 Vo
For vectorsu:= | | andv:= | | their inner product is given by,
Un Vn
(U, v) == ugvy + Ugvo + -+ - + UpVy (1.11)

Inner Product Space

A vector space V over a field F is said to be an inner product space if an inner product defined on it

obeys the following axioms:
L VuveV({(uv) =vu)
2. Vu,vow eV ((u+v,w) = (u,w) + (v, w))
3. Vu,v e VYA € F ((Au,v) = A(u,v))
4. VveV({v,v)>0)

Corollary
vv)=0<=v=0 (1.12)
Norm
The norm of a vector v := (v1,Va,...,Vy) in a vector space V equipped with an inner product is given
by,
[Vl = v (v, v) (1.13)
= V2V 2 (1.14)

The norm also represents the length of a vector.
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Cauchy-Schwarz Inequality

U
Uz
The Cauchy-Schwarz inequality states that the inner product of any two vectorsu = | | andv =
Un
Vi
Va2
is always less than or equal to the product of their norms.
Vn
(u,v) < uflfjv] (1.15)

LUV F UV F - Up Vg < \/u%+u§+~-~+ug\/v§+v§+---+va
n

n
- Zuivi < (1.16)
i=1 i=1
Cosine Similarity
The angle 0 between two vectors u and v is given by,
u,v u,v
0 == arccos (<’>> = cos 0 = {wv) (1.17)
[[ulivil [ulvli

1.3.5 Orthogonal Transformation

A linear transformation T : V — W is said to be an orthogonal transformation if the following axioms
hold:

LYveV(|TW)| =|vI) (Length invariance)

il il

2. Vu,veV (arccos (M) = arccos (M)> (Angle invariance)

The resultant of these axioms can be given by the following relation:

(Tw), T(v)) = (u,v) (1.18)

1.3.6 Eigenvalues and Eigenvectors
Diagonalization
Cayley-Hamilton Theorem

Function of a square matrix
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Chapter 2

Numerical Linear Algebra

2.1 Gaussian Elimination
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Chapter 3

Vector Algebra

3.1 Definition

A vector is a mathematical entity that has a magnitude and a direction. A vector can be represented

using an array of n numbers, where n is called the dimension of the vector.

3.2 Vector Operations

3.2.1 Vector Addition

Parallelogram law

vl =yl + V]2 + 20w -v) (31)
3.2.2 Vector Products
Scalar Product
If vectors u = (uj, Ug,...,Un) and v := (v1,Vva,...,vy) € R™, then their scalar product (or dot
product) is defined as,
U-v:=ujvy +UsVg + -+ +UpVn (3.2)

If © is the angle between the vectors u and v, then the scalar product has the following polar definition:

u-v:=|ul|v| cos® (3.3)

Vector Product
Consider vectors U := (Uy, Wy, U;) and v := (v, vy, v,) € R3. Their vector product (or cross product)
is defined as,
i j k
UXVi= U uy U

Ve Vy Vg

= (UyVz — UzVy, UzVx — UV, Uy Vy — Uy Vy) (3.4)
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If © is the angle between the vectors u and v, then the vector product has the following polar definition:

u X v = (uffv]sin6)n

(3.5)

where 1 is the unit vector normal to the plane formed by the vectors u and v such that u, v and 11 form

a right-handed system.

Scalar Triple Product

The scalar triple product (or box product) of three vectors u, v, w € R? is given by

det(u Y w)::u~(v><w):(u><
u-i u-i u-k

=|v-i vj vk

w-i wj w-k

Vector Triple Product

The vector triple product of three vectors u, v, w € R3 is given by

ux (vxw)=u-whyv—(u-vijw

(UuxXv)Xw=(u-whv—(v-whu

3.2.3 Projection

The vector projection of a vector u on a vector v is defined as

i w= (-9 (u hd ) hd
proj,u = (u- = | —
v vl / vl

The scalar projection is simply the norm of the above expression.

v

lproj,u/| =u-v=u- —
¥ vl

3.2.4 Lagrange’s lidentity

Lagrange’s identity states that,

2 2 214,112
(u-v)" + [Ju x| = [[uf[v]
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3.3 Three Dimensional Geometry

3.3.1 Coplanarity

The vectors u, v and w € R3 are said to be coplanar iff,

det(u AY w)=0

Uy Uy Uy
or, vy vy v;|=0

Wy Wy Wy

3.3.2 Basis

The basis vectors of 3D space are defined as i for the x axis, i for the y axis and k for the z axis.

They are related to each other as follows:

ixj=k<e=jxi=—k
jxk=i<e=kxj=—i
kxi=j<=ixk=—

Vx

A vector v € R3 with the components vy, vy and v, can be denoted as v, |, vxi + vyj + vz]A< or

Vz
(Vxs Vy, Vz).
3.3.3 Directional Cosines and Ratios
Consider a vector v == (vy, vy, v,) € R3.
The normalized vector V is given by,
b=
Wl
v v v
= < = : - : = > (3.13)
\/vg FVE V2 V2 V2 V2 V2 v 2
The directional cosines |, m and n of v are given by,
v
l=cosoxi= ——o>— (3.14)
\/ Vit vy V2
v
m=cosfi= —=>F (3.15)
\/Vi+ Vi +Vv2
v
n=cosy:= ———=o0 (3.16)
\/V:H+VE V2
Therefore, any vector parallel to v is proportional to the vector (1, m, n).
u|v=ux(l,mn) (3.17)
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Here, u can be defined to be the vector (a, b, ¢), where a, b, ¢ are known as directional ratios of v.

Corollaries
124+ m?+n? =cos’x+cos? p +cos’y =1 (3.18)
sin? & + sin? B + sin?y = 2 (3.19)
I m n
— === 3.20
a b (¢ (3:20)

3.3.4 Distance between two points

The distance between two points denoted by the position vectors u and v is defined as ||[v — u]|.

Section formula

A point r dividing the segment between vectors u and v in the ratio of m; : my is given by

moll + My v .
r=-——" """ for internal division (3.21)
my + My
mau — myv
ri=—— 1 for external division (3.22)
mp —meo

3.3.5 Lines
Point-slope form

Let a == (x1,Y1,21) be a point on a line in the direction of the vector b := (a,b,c). A point r =

(x,y, z) on the line is given by,

r=a+Ab, AR (3.23)
r—a=Ab
X —=x1,Y — Y1,z —2z1) = (Aa,Ab, Ac)

= X—X] =Aa, y—y; =Ab, z—z; =Ac

X —X1 Yy—y Z—zZ
: = = =A 3.24
" oa b c (3.24)

Eq. is known as the symmetric form of the given line.

Two-point form
Let a == (x1,Y1,21) and b = (X2, Y2, z2) be two points on a line. A point r == (x,y, z) on the line is
given by,
r=a+A(b—a), AeR (3.25)
r—a=A(b—a)
s =xny —ynz—z1) = Mxe —x1), Ay2 — Y1), Mzz — 21))
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= x—x1 =Ax2—%X1), Yy—Y1 = A (Y2 —y1), z—2z1 = Az2 — 1)
X—X1 Y-y  z—z

= = =A (3.26)
X2 —X1 Y2 — Y1 Z — 21

Eq. is known as the symmetric two-point form of the given line.

Unsymmetrical form

A line defined by the intersection of the planes given by a;x+b1y+c1z = d; and asx+bay+coz = do

X
b d
ay 1 € yl = 1 (3.27)
ao bg Co d2
z

This is known as the unsymmetrical form of the given line.

is given by,

Angle between two lines

For the lines in the direction of the vectors by o (l;, my,n;) and by o (ly, Mg, no), the angle (6)

between them is given by,

FA b, b
0 = arccos (by - by) = arccos (Hbl|||l32|) = arccos (lilo + myms +ninsy) (3.28)
111102

Distance between two lines

The distance between the parallel lines Ly : r = a; + Ab and Ly : r = ay + pub is given by,

. bx(ag—a
dist (L, Ly) = I (IISII il (3.29)

The distance between the skew lines L; : r = a; + Ab; and Ly : v = as + pubs is given by,

(a2 —a1) - (by X by)

dist (L1, Ls) = b1 X by

(3.30)

3.3.6 Planes
Point-normal form
Consider a plane containing a point a = (x1,Y1,21) and having a normal vector n == (a,b,c). A
point r = (x, Yy, z) on the plane is given by,
(r—a) n=0 or rn=a-n (3.31)
sx,y,2) - {a,b,c) = (x1,Y1,21) - (a, b, c)
sax+by+cz=ax; +by; +cz;
Let d .= ax; + by; + cz;.
= ax+by+cz=d (3.32)

This is known as the Cartesian equation of the plane.
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Two intersecting lines
Consider two intersecting lines givenby r = a+Ap and r = a + nuq.

The normal vector 1 to the plane is given by n := p X (. From eq. (3.31),

(r—a)-(pxq)zo:det(r—a P q):0 (3.33)

Two parallel lines

Consider two parallel lines given by r = a; + Ab and a, + ub.

The normal vector n to the plane is given by n := (az — a;) X b. From eq. (3.31),

(r—a) (@—a))xb)=0=det (r—a; a;—a q)=0 (3.34)

Normal form

Consider a plane having a normal vector n o (1, m, n) and being at a distance of d from the origin. A

point r = (x,y, z) on the plane is given by,

rn=d (3.35)
= Ix+my+nz=d (3.36)

Intercept form

A plane in three dimensional space having intercepts of a, b and ¢ on the x, y and z axes respectively

is given by,

L - (3.37)
a C

o'

Distances from a plane

« The distance of a point a := (x1,Y1,21) from a plane TT : r-n = d is given by,

dist (a, TT) = a||1:1||d’ (3.38)
If n = (a,b,c), then by eq. and eq. (3.38),
dist (@, TT) = axv%%— d' (3.39)
« The distance between the parallel planes Ty : v-n = d; and TT; : r-n = dg is given by,
dist (TTq,TT2) = % (3.40)

Family of planes

The family of planes passing through the line of intersection of two planes Iy and ITs is given by,

M +AMl, =0, AeR (3.41)
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The bisector plane between two intersecting planes given by r - n; = d; and r - ny = d; is given by,

r-ng —d; _ T Ny —ds (3.42)
Il 2|
Angles made by a plane
« The angle © between the planes with normal vectors n; and ns is given by,
L n -n
0 = arccos (M - ly) = arccos (12) (3.43)
[[ma[[n2||

« The angle 0 between the plane given by r - n = d and the line given by r = a + Ab is given by,

(A D ) n-b
0 = arcsin (n . b) = arcsin <”n”m|> (3.44)
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Chapter 4

Vector Calculus

4.1 Vector Fields

4.2 Nabla Operator

The operator V is pronounced as “nabla” (or del).

In 2D, it is defined as,

0 0
V={(—,— 4.1
< ox’ oy > (1)
In 3D, it is defined as,
0o 0 0
Ve={(——,— 4.2
< ox’ oy’ az> (4.2)
In a space with n dimensions, it is defined as,
0 0 0
V={— — .., — 43
< 0x1’ Oxs’ OXn > (43)

4.3 Gradient

Consider f(x) to be a scalar multivariable function.
In 2D, f will be denoted as f(x, y).
In 3D, f will be denoted as f(x,y, z).

In a space with n dimensions, f will be denoted as f(x1,X2,...,Xn).
of of of
Vf=(—,—,..., — 4.4
<6x1’6xQ’ 76xn> (44)
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4.4 Divergence

The divergence of a vector field F is defined as,

OF-e) , O(F-&) ,  OF-&n)

V-.-F=
axl aXQ axn
n ~
o(F- e
_ Z ( el) (4.5)
“ x4
i=1
In 2D, . .
O(F-i o(F-j
V.F_ ( 1)+ (F-j) (4.6)
0x dy
In 3D, A . A
o(F-i) 9(F-j) 0(F-k)
V.F— 4.7
0x * dy * 0z (4.7)
Positive divergence acts as a source while negative divergence acts as a sink.
4.5 Curl
In three dimensions, V = <%, %, %>.
The curl of a 3D vector field F is defined as,
i j  k
|0 f) )
V XF = % oy 0
F-i F-j F-k
o(F-k) 0O(F-j) o(F-i) 9o(F-k) o(F-j) o(F-i)
= - ) - ’ - (48)
dy 0z 0z 0x 0x dy
4.6 Laplacian
Consider f(x) to be a scalar multivariable function.
In 2D, the Laplacian of f is defined as,
0%f  0%f
2
f=—+— 4.9
v ox2 * oy? (49)
In 3D, the Laplacian of f is defined as,
0%f  0%f  0%f
st ——+— 4.10
v 0x2 * oy? * 022 (4.10)
In a space with n dimensions, the Laplacian of f is defined as,
0%f  0%f 0%f
vzf _ — R o R
ox? - 0x2 T 0x3
n
0%f
_ Z 57 (4.11)
i=1 1
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4.7 Directional Derivative
The derivative of a scalar multivariable function f(x) in the direction of a vector v is given by,

o fx+hv) —f(x)
VVIte) = i

- H%H V(X)) = V- VF(X) (4.12)
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Chapter 5

Differential Geometry

5.1 Defining Quantities

5.1.1 Vectors

Position

Position is denoted as 1(t).

In 2D, r(t) == (x(t),y(t)).

In 3D, r(t) == (x(t),y(t), z(t)).

In an n-dimensional space,

i=0
Taylor-Series expansion

dr d?r 2 &Br
t) = —(0)-t+ —(0) — + —
r(t) = 7(0) + F(0) - t+ S5 (0) - o + o

0 nye tn

“ 2w

n=0

Displacement

Displacement is denoted as d(tq, t2).

Velocity

Velocity is denoted as v(t).

Acceleration

Acceleration is denoted as a(t).

d(ty, t2) = r(t2) —7(t1)

a(t):

v
Tdt
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Jerk
Jerk is denoted as j(t).
da d*v, . dr

= @(t) = ﬁ(t)

Tangent

The unit tangent vector is denoted by T(t).

- . v(t)
T(t) =v(t) =
vl
Normal
The unit normal vector is denoted by N(t).
A at(t) / dt
N(t) =
]

Binormal

The unit binormal vector is denoted by B(t).

B(t):=T(t) x N(t)

5.1.2 Scalars
Speed

Speed is denoted as v(t).

Arc Length

Arc length is denoted as s(t).

Curvature

Curvature is denoted as k(t).

() o0 x atw)]
vl
Radius of Curvature
Radius of curvature is denoted as R(t). .
R(t) = py)
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Tangential Angle

Tangential angle is denoted as @(t).

Torsion

Torsion is denoted as T(t).

t
= e X a0l
Ifr(t) = (x(t),y(t),z(t)), then
x'(t) y'(t) Z'(t)
x"(t) y”(t) z"(t)
X///(t) y/// t) Z/I/(t)
T(t) = D)

5.2 Theorems

(5.14)

(5.15)

(5.16)
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