Arrows or Arrays?

RRG

2024

Contents

Contents						
1	Line	Linear Algebra				
	1.1	Matric	es	3		
		1.1.1	Matrix transformations	3		
		1.1.2	Properties of matrices	4		
		1.1.3	Operations on square matrices	4		
		1.1.4	Linear Dependence of Vectors	5		
		1.1.5	System of Linear Equations	5		
		1.1.6	Similarity of two matrices	5		
	1.2	Vector	Spaces	5		
		1.2.1	Vector Subspaces	5		
		1.2.2	Span	6		
		1.2.3	Basis	6		
	1.3	Linear	Transformations	6		
		1.3.1	Column space	6		
		1.3.2	Null space	6		
		1.3.3	Rank-Nullity Theorem	7		
		1.3.4	Inner Product	7		
		1.3.5	Orthogonal Transformation	8		
		1.3.6	Eigenvalues and Eigenvectors	8		
2	Nur	merical Linear Algebra				
	2.1	Gaussi	ian Elimination	9		
3	Vec	tor Alg	ebra	10		
	3.1	Defini	tion	10		
	3.2	Vector	Operations	10		
		3.2.1	Vector Addition	10		
		3.2.2	Vector Products	10		
		3.2.3	Projection	11		
		3.2.4	Lagrange's Iidentity	11		
	3.3	Three	Dimensional Geometry	12		
		3.3.1	Coplanarity	12		
		3.3.2	Basis	12		
		3.3.3	Directional Cosines and Ratios	12		
		334	Distance between two points	13		

		3.3.5 Lines	13				
		3.3.6 Planes	14				
4	Vector Calculus						
	4.1	Vector Fields	17				
	4.2	Nabla Operator	17				
	4.3	Gradient	17				
	4.4	Divergence	18				
	4.5	Curl	18				
	4.6	Laplacian	18				
	4.7	Directional Derivative	19				
5	Diff	Ferential Geometry	20				
	5.1	Defining Quantities	20				
		5.1.1 Vectors	20				
		5.1.2 Scalars	21				
	5.2	Theorems	22				

Linear Algebra

1.1 Matrices

A matrix is a rectangular array of expressions, used to represent a mathematical property or object.

Order of a matrix is given by $m \times n$, where m and n represent the number of rows and the number of columns respectively.

The set of all matrices of order $m \times n$ containing elements of a scalar field $\mathbb F$ is represented by $\mathcal M_{m \times n}(\mathbb F)$. For example,

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$

1.1.1 Matrix transformations

Transpose

The transpose A^{\top} of a matrix A is obtained by switching its rows and columns.

$$A^{\top} := [a_{ij}] \ \forall \ a_{ij} \in A \tag{1.1}$$

If $A \in \mathfrak{M}_{m \times n}(\mathbb{F})$, then $A^{\top} \in \mathfrak{M}_{n \times m}(\mathbb{F})$.

Adjugate

Inverse

The inverse A^{-1} of a matrix A is defined such that their product results in the identity matrix I, which is discussed further in §1.1.2.

$$AA^{-1} = A^{-1}A = I (1.2)$$

The inverse can be obtained from the adjugate using the following definition,

$$A^{-1} := \frac{\operatorname{adj} A}{\det(A)} \tag{1.3}$$

The determinant will be discussed further in §1.1.3.

1.1.2 Properties of matrices

Square matrices

If the number of rows of a matrix is the same as the number of its columns, then the matrix is said to be a square matrix. For example,

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Symmetric matrices

Skew-symmetric matrices

Null matrices

Orthogonal matrices

Idempotent matrices

Nilpotent matrices

Diagonal matrices

Identity matrices

1.1.3 Operations on square matrices

Trace

The *trace* of a square matrix is defined to be the sum of the elements on its leading diagonal.

$$\operatorname{tr}\left(\begin{bmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn} \end{bmatrix}\right) := m_{11} + m_{22} + m_{33} + \cdots + m_{nn} = \sum_{i=1}^{n} m_{ii} \qquad (1.4)$$

Determinant

Elementary Row Operations

Row Echelon form of a matrix

1.1.4 Linear Dependence of Vectors

1.1.5 System of Linear Equations

1.1.6 Similarity of two matrices

1.2 Vector Spaces

A set V with operations of addition and scalar multiplication over a field \mathbb{F} defined on it is called a vector space if it satisfies the following axioms:

Closure

- 1. $\forall u, v \in V (u + v \in V)$ (Closure under vector addition)
- 2. $\forall v \in V \ \forall \lambda \in \mathbb{F} \ (\lambda v \in V)$ (Closure under scalar multiplication)

Vector Addition

- 3. $\forall u, v \in V (u + v = v + u)$ (Commutativity)
- 4. $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V (\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w})$ (Associativity)
- 5. $\exists 0 \in V \ \forall v \in V \ (v + 0 = v)$ (Existence of neutral element)
- 6. $\forall v \in V \exists (-v) \in V (v + (-v) = 0)$ (Existence of additive inverse)

Scalar Multiplication

- 7. $\forall u, v \in V \ \forall \lambda \in \mathbb{F} \ (\lambda(u+v) = \lambda u + \lambda v)$ (Distributivity over vector addition)
- 8. $\forall v \in V \ \forall \lambda, \mu \in \mathbb{F} \ ((\lambda + \mu)v = \lambda v + \mu v)$ (Distributivity over field addition)
- 9. $\forall v \in V \,\forall \lambda, \mu \in \mathbb{F} ((\lambda \mu)v = \lambda(\mu v))$ (Associativity)
- 10. $\exists 1 \in \mathbb{F} \ \forall \ \mathbf{v} \in V \ (1\mathbf{v} = \mathbf{v})$ (Existence of neutral element)

1.2.1 Vector Subspaces

A set W is said to be a *subspace* of a vector space V over a field \mathbb{F} , if itself is also a vector space. Since V is given to be a vector space, W needs to satisfy only the following axioms:

- 1. $0 \in W$ (Existence of additive identity)
- 2. $\forall \mathbf{u}, \mathbf{v} \in W \ (\mathbf{u} + \mathbf{v} \in W)$ (Closure under addition)
- 3. $\forall v \in W \ \forall \lambda \in \mathbb{F} \ (\lambda v \in W)$ (Closure under scalar multiplication)

1.2.2 **Span**

The span of a set of vectors is defined as the set of all linear combinations of those vectors.

$$\operatorname{span}(v_1, v_2, \dots, v_n) := \left\{ w \middle| w = \sum_{i=1}^n \lambda_i v_i \, \forall \, \lambda_i \in \mathbb{R} \right\}$$
 (1.5)

1.2.3 Basis

A subset S of a vector space V is said to form a basis for V if span(S) = V. This is verified if the following is true:

- 1. S is linearly independent.
- 2. $\dim(S) = \dim(V)$

Therefore, 0 can never exist in a basis.

Basis vectors are usually denoted by e_i , where i refers to the ith basis vector.

1.3 Linear Transformations

A transformation T is a mapping from a vector space V to a vector space W over a field \mathbb{F} . A transformation is said to be linear if it follows the following axioms:

1.
$$T(O_V) = O_W$$
 (Origin invariance)

2.
$$\forall u, v \in V (T(u+v) = T(u) + T(v))$$
 (Linearity over vector addition)

3.
$$\forall v \in V \ \forall \lambda \in \mathbb{F} \ (T(\lambda v) = \lambda \cdot T(v))$$
 (Linearity over scalar multiplication)

1.3.1 Column space

The column space (or image) of a linear transformation $T:V\to W$ is defined as the span of all transformed vectors in the codomain W.

$$\operatorname{im}(\mathsf{T}) := \{\mathsf{T}(\mathbf{v}) \mid \mathbf{v} \in \mathsf{V}\} \tag{1.6}$$

The rank of a transformation is defined as the dimension of its column space.

$$rank(T) := dim(im(T)) \tag{1.7}$$

1.3.2 Null space

The null space (or kernel) of a linear transformation $T:V\to W$ is defined as the set of all vectors in the domain V that map to the additive identity in the codomain W.

$$\ker(\mathsf{T}) := \{ \mathbf{v} \in \mathsf{V} \mid \mathsf{T}(\mathbf{v}) = \mathsf{O}_{\mathsf{W}} \} \tag{1.8}$$

The *nullity* of a transformation is defined as the dimension of its null space.

$$\operatorname{nullity}(\mathsf{T}) := \dim(\ker(\mathsf{T}))$$
 (1.9)

1.3.3 **Rank-Nullity Theorem**

The rank-nullity theorem states that for a linear transformation T, the sum of the dimensions of its column space and its null space equals the dimension of the domain.

$$rank(T) + nullity(T) = \dim(V) \tag{1.10}$$

1.3.4 Inner Product

The inner product is defined as a mapping from a pair of vectors belonging to a vector space to a scalar.

For vectors
$$\mathbf{u} := \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_n \end{bmatrix}$$
 and $\mathbf{v} := \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_n \end{bmatrix}$ their inner product is given by,
$$\langle \mathbf{u}, \mathbf{v} \rangle := \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \dots + \mathbf{u}_n \mathbf{v}_n \tag{1.11}$$

Inner Product Space

A vector space V over a field \mathbb{F} is said to be an inner product space if an inner product defined on it obeys the following axioms:

1.
$$\forall u, v \in V (\langle u, v \rangle = \langle v, u \rangle)$$

2.
$$\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V (\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle)$$

3.
$$\forall \mathbf{u}, \mathbf{v} \in \mathbf{V} \ \forall \ \lambda \in \mathbb{F} \left(\langle \lambda \mathbf{u}, \mathbf{v} \rangle = \lambda \langle \mathbf{u}, \mathbf{v} \rangle \right)$$

4.
$$\forall \mathbf{v} \in V (\langle \mathbf{v}, \mathbf{v} \rangle \geqslant 0)$$

Corollary

$$\langle \mathbf{v}, \mathbf{v} \rangle = 0 \Longleftrightarrow \mathbf{v} = \mathbf{0}$$
 (1.12)

Norm

The norm of a vector $\mathbf{v} \coloneqq \langle v_1, v_2, \dots, v_n \rangle$ in a vector space V equipped with an inner product is given by,

$$\|\mathbf{v}\| \coloneqq \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

$$= \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
(1.13)

$$= \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} \tag{1.14}$$

The norm also represents the *length* of a vector.

Cauchy-Schwarz Inequality

The Cauchy-Schwarz inequality states that the inner product of any two vectors $\mathbf{u} \coloneqq \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_n \end{bmatrix}$ and $\mathbf{v} \coloneqq \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_n \end{bmatrix}$

$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 is always less than or equal to the product of their norms.

$$\langle \mathbf{u}, \mathbf{v} \rangle \leqslant \|\mathbf{u}\| \|\mathbf{v}\|$$

$$\therefore u_{1}v_{1} + u_{2}v_{2} + \dots + u_{n}v_{n} \leqslant \sqrt{u_{1}^{2} + u_{2}^{2} + \dots + u_{n}^{2}} \sqrt{v_{1}^{2} + v_{2}^{2} + \dots + v_{n}^{2}}$$

$$\implies \sum_{i=1}^{n} u_{i}v_{i} \leqslant \sqrt{\sum_{i=1}^{n} u_{i}^{2}} \sqrt{\sum_{i=1}^{n} v_{i}^{2}}$$

$$(1.15)$$

Cosine Similarity

The angle θ between two vectors \boldsymbol{u} and $\boldsymbol{\nu}$ is given by,

$$\theta := \arccos\left(\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}\right) \Longrightarrow \cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}$$
(1.17)

1.3.5 Orthogonal Transformation

A linear transformation $T:V\to W$ is said to be an *orthogonal transformation* if the following axioms hold:

1.
$$\forall v \in V (\|T(v)\| = \|v\|)$$
 (Length invariance)
2. $\forall u, v \in V \left(\arccos\left(\frac{\langle T(u), T(v) \rangle}{\|u\| \|v\|}\right) = \arccos\left(\frac{\langle u, v \rangle}{\|u\| \|v\|}\right)\right)$ (Angle invariance)

The resultant of these axioms can be given by the following relation:

$$\langle \mathsf{T}(\mathbf{u}), \mathsf{T}(\mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$$
 (1.18)

1.3.6 Eigenvalues and Eigenvectors

Diagonalization

Cayley-Hamilton Theorem

Function of a square matrix

Numerical Linear Algebra

2.1 Gaussian Elimination

Vector Algebra

3.1 Definition

A vector is a mathematical entity that has a magnitude and a direction. A vector can be represented using an array of n numbers, where n is called the *dimension* of the vector.

3.2 Vector Operations

3.2.1 Vector Addition

Parallelogram law

$$\|\mathbf{u} + \mathbf{v}\| := \sqrt{\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2(\mathbf{u} \cdot \mathbf{v})}$$
 (3.1)

3.2.2 Vector Products

Scalar Product

If vectors $\mathbf{u} \coloneqq \langle u_1, u_2, \dots, u_n \rangle$ and $\mathbf{v} \coloneqq \langle v_1, v_2, \dots, v_n \rangle \in \mathbb{R}^n$, then their scalar product (or dot product) is defined as,

$$\mathbf{u} \cdot \mathbf{v} \coloneqq \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \dots + \mathbf{u}_n \mathbf{v}_n \tag{3.2}$$

If θ is the angle between the vectors \mathbf{u} and \mathbf{v} , then the scalar product has the following polar definition:

$$\mathbf{u} \cdot \mathbf{v} \coloneqq \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta \tag{3.3}$$

Vector Product

Consider vectors $\mathbf{u} \coloneqq \langle \mathbf{u}_x, \mathbf{u}_y, \mathbf{u}_z \rangle$ and $\mathbf{v} \coloneqq \langle \mathbf{v}_x, \mathbf{v}_y, \mathbf{v}_z \rangle \in \mathbb{R}^3$. Their vector product (or cross product) is defined as,

$$\mathbf{u} \times \mathbf{v} \coloneqq \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \mathbf{u}_{x} & \mathbf{u}_{y} & \mathbf{u}_{z} \\ \mathbf{v}_{x} & \mathbf{v}_{y} & \mathbf{v}_{z} \end{vmatrix}$$

$$= \langle \mathbf{u}_{y} \mathbf{v}_{z} - \mathbf{u}_{z} \mathbf{v}_{y}, \mathbf{u}_{z} \mathbf{v}_{x} - \mathbf{u}_{x} \mathbf{v}_{z}, \mathbf{u}_{x} \mathbf{v}_{y} - \mathbf{u}_{y} \mathbf{v}_{x} \rangle$$
(3.4)

If θ is the angle between the vectors \mathbf{u} and \mathbf{v} , then the vector product has the following polar definition:

$$\mathbf{u} \times \mathbf{v} \coloneqq (\|\mathbf{u}\| \|\mathbf{v}\| \sin \theta) \hat{\mathbf{n}} \tag{3.5}$$

where $\hat{\mathbf{n}}$ is the unit vector normal to the plane formed by the vectors \mathbf{u} and \mathbf{v} such that \mathbf{u} , \mathbf{v} and $\hat{\mathbf{n}}$ form a right-handed system.

Scalar Triple Product

The scalar triple product (or box product) of three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ is given by

$$\det \begin{pmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{pmatrix} \coloneqq \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} \tag{3.6}$$

$$= \begin{vmatrix} \mathbf{u} \cdot \hat{\mathbf{i}} & \mathbf{u} \cdot \hat{\mathbf{j}} & \mathbf{u} \cdot \hat{\mathbf{k}} \\ \mathbf{v} \cdot \hat{\mathbf{i}} & \mathbf{v} \cdot \hat{\mathbf{j}} & \mathbf{v} \cdot \hat{\mathbf{k}} \\ \mathbf{w} \cdot \hat{\mathbf{i}} & \mathbf{w} \cdot \hat{\mathbf{j}} & \mathbf{w} \cdot \hat{\mathbf{k}} \end{vmatrix}$$
(3.7)

Vector Triple Product

The vector triple product of three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ is given by

$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) \coloneqq (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w} \tag{3.8}$$

$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} \coloneqq (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u} \tag{3.9}$$

3.2.3 Projection

The vector projection of a vector ${f u}$ on a vector ${f v}$ is defined as

$$\operatorname{proj}_{v} \mathbf{u} := (\mathbf{u} \cdot \hat{\mathbf{v}}) \hat{\mathbf{v}} = \left(\mathbf{u} \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|}\right) \frac{\mathbf{v}}{\|\mathbf{v}\|}$$
(3.10)

The scalar projection is simply the norm of the above expression.

$$\|\operatorname{proj}_{v} \mathbf{u}\| \coloneqq \mathbf{u} \cdot \hat{\mathbf{v}} = \mathbf{u} \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|}$$
 (3.11)

3.2.4 Lagrange's Iidentity

Lagrange's identity states that,

$$(\mathbf{u} \cdot \mathbf{v})^2 + \|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 \tag{3.12}$$

3.3 Three Dimensional Geometry

3.3.1 Coplanarity

The vectors \mathbf{u}, \mathbf{v} and $\mathbf{w} \in \mathbb{R}^3$ are said to be coplanar iff,

$$\det \begin{pmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} \end{pmatrix} = 0$$
or,
$$\begin{vmatrix} \mathbf{u}_{x} & \mathbf{u}_{y} & \mathbf{u}_{z} \\ \mathbf{v}_{x} & \mathbf{v}_{y} & \mathbf{v}_{z} \\ \mathbf{w}_{x} & \mathbf{w}_{y} & \mathbf{w}_{z} \end{vmatrix} = 0$$

3.3.2 Basis

The basis vectors of 3D space are defined as \hat{i} for the x axis, \hat{j} for the y axis and \hat{k} for the z axis.

They are related to each other as follows:

$$\begin{split} \hat{\mathbf{i}} \times \hat{\mathbf{j}} &= \hat{\mathbf{k}} \Longleftrightarrow \hat{\mathbf{j}} \times \hat{\mathbf{i}} = -\hat{\mathbf{k}} \\ \hat{\mathbf{j}} \times \hat{\mathbf{k}} &= \hat{\mathbf{i}} \Longleftrightarrow \hat{\mathbf{k}} \times \hat{\mathbf{j}} = -\hat{\mathbf{i}} \\ \hat{\mathbf{k}} \times \hat{\mathbf{i}} &= \hat{\mathbf{j}} \Longleftrightarrow \hat{\mathbf{i}} \times \hat{\mathbf{k}} = -\hat{\mathbf{j}} \end{split}$$

A vector $\mathbf{v} \in \mathbb{R}^3$ with the components v_x , v_y and v_z can be denoted as $\begin{bmatrix} v_x \\ v_y \\ v \end{bmatrix}$, $v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}} + v_z \hat{\mathbf{k}}$ or $\langle v_x, v_y, v_z \rangle$.

3.3.3 Directional Cosines and Ratios

Consider a vector $\mathbf{v} \coloneqq \langle \mathbf{v}_{\mathsf{x}}, \mathbf{v}_{\mathsf{y}}, \mathbf{v}_{\mathsf{z}} \rangle \in \mathbb{R}^3$.

The normalized vector $\hat{\mathbf{v}}$ is given by,

$$\hat{\mathbf{v}} := \frac{\mathbf{v}}{\|\mathbf{v}\|} \\
= \left\langle \frac{v_{x}}{\sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}}, \frac{v_{y}}{\sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}}, \frac{v_{z}}{\sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}} \right\rangle$$
(3.13)

The directional cosines l, m and n of v are given by,

$$l = \cos \alpha := \frac{\nu_x}{\sqrt{\nu_x^2 + \nu_y^2 + \nu_z^2}}$$
 (3.14)

$$m = \cos \beta := \frac{\nu_y}{\sqrt{\nu_x^2 + \nu_y^2 + \nu_z^2}}$$
 (3.15)

$$m = \cos \beta := \frac{v_y}{\sqrt{v_x^2 + v_y^2 + v_z^2}}$$

$$n = \cos \gamma := \frac{v_z}{\sqrt{v_x^2 + v_y^2 + v_z^2}}$$
(3.15)

Therefore, any vector parallel to v is proportional to the vector (l, m, n).

$$\mathbf{u} \parallel \mathbf{v} \Longrightarrow \mathbf{u} \propto \langle \mathbf{l}, \mathbf{m}, \mathbf{n} \rangle$$
 (3.17)

Here, \mathbf{u} can be defined to be the vector $\langle a, b, c \rangle$, where a, b, c are known as directional ratios of \mathbf{v} .

Corollaries

$$l^{2} + m^{2} + n^{2} = \cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma = 1$$
 (3.18)

$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2 \tag{3.19}$$

$$\frac{l}{a} = \frac{m}{b} = \frac{n}{c} \tag{3.20}$$

3.3.4 Distance between two points

The distance between two points denoted by the position vectors \mathbf{u} and \mathbf{v} is defined as $\|\mathbf{v} - \mathbf{u}\|$.

Section formula

A point r dividing the segment between vectors u and v in the ratio of m_1 : m_2 is given by

$$\mathbf{r} \coloneqq \frac{\mathbf{m}_2 \mathbf{u} + \mathbf{m}_1 \mathbf{v}}{\mathbf{m}_1 + \mathbf{m}_2}$$
 for internal division (3.21)

$$\mathbf{r} \coloneqq \frac{m_2 \mathbf{u} - m_1 \mathbf{v}}{m_1 - m_2}$$
 for external division (3.22)

3.3.5 **Lines**

Point-slope form

Let $\mathbf{a} := \langle x_1, y_1, z_1 \rangle$ be a point on a line in the direction of the vector $\mathbf{b} := \langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle$. A point $\mathbf{r} := \langle x, y, z \rangle$ on the line is given by,

$$\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}, \ \lambda \in \mathbb{R}$$

$$\therefore \mathbf{r} - \mathbf{a} = \lambda \mathbf{b}$$

$$\therefore \langle \mathbf{x} - \mathbf{x}_1, \mathbf{y} - \mathbf{y}_1, \mathbf{z} - \mathbf{z}_1 \rangle = \langle \lambda \mathbf{a}, \lambda \mathbf{b}, \lambda \mathbf{c} \rangle$$
(3.23)

$$\Rightarrow x - x_1 = \lambda a, \ y - y_1 = \lambda b, \ z - z_1 = \lambda c$$

$$\therefore \frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c} = \lambda$$
(3.24)

Eq. 3.24 is known as the symmetric form of the given line.

Two-point form

Let $\mathbf{a} \coloneqq \langle \mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1 \rangle$ and $\mathbf{b} \coloneqq \langle \mathbf{x}_2, \mathbf{y}_2, \mathbf{z}_2 \rangle$ be two points on a line. A point $\mathbf{r} \coloneqq \langle \mathbf{x}, \mathbf{y}, \mathbf{z} \rangle$ on the line is given by,

$$\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}), \ \lambda \in \mathbb{R}$$

$$\therefore \mathbf{r} - \mathbf{a} = \lambda(\mathbf{b} - \mathbf{a})$$

$$\therefore \langle \mathbf{x} - \mathbf{x}_1, \mathbf{y} - \mathbf{y}_1, \mathbf{z} - \mathbf{z}_1 \rangle = \langle \lambda(\mathbf{x}_2 - \mathbf{x}_1), \lambda(\mathbf{y}_2 - \mathbf{y}_1), \lambda(\mathbf{z}_2 - \mathbf{z}_1) \rangle$$
(3.25)

$$\Rightarrow x - x_1 = \lambda(x_2 - x_1), \ y - y_1 = \lambda(y_2 - y_1), \ z - z_1 = \lambda(z_2 - z_1)$$

$$\therefore \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1} = \lambda$$
(3.26)

Eq. 3.26 is known as the *symmetric two-point form* of the given line.

Unsymmetrical form

A line defined by the intersection of the planes given by $a_1x+b_1y+c_1z=d_1$ and $a_2x+b_2y+c_2z=d_2$ is given by,

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$
 (3.27)

This is known as the *unsymmetrical form* of the given line.

Angle between two lines

For the lines in the direction of the vectors $\mathbf{b}_1 \propto \langle \mathbf{l}_1, \mathbf{m}_1, \mathbf{n}_1 \rangle$ and $\mathbf{b}_2 \propto \langle \mathbf{l}_2, \mathbf{m}_2, \mathbf{n}_2 \rangle$, the angle (θ) between them is given by,

$$\theta = \arccos\left(\hat{\mathbf{b}}_1 \cdot \hat{\mathbf{b}}_2\right) = \arccos\left(\frac{\mathbf{b}_1 \cdot \mathbf{b}_2}{\|\mathbf{b}_1\| \|\mathbf{b}_2\|}\right) = \arccos\left(\mathbf{l}_1 \mathbf{l}_2 + \mathbf{m}_1 \mathbf{m}_2 + \mathbf{n}_1 \mathbf{n}_2\right) \tag{3.28}$$

Distance between two lines

The distance between the parallel lines $L_1: \mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{b}$ and $L_2: \mathbf{r} = \mathbf{a}_2 + \mu \mathbf{b}$ is given by,

$$\operatorname{dist}\left(\mathsf{L}_{1},\mathsf{L}_{2}\right)=\frac{\left\|\mathbf{b}\times\left(\mathbf{a}_{2}-\mathbf{a}_{1}\right)\right\|}{\left\|\mathbf{b}\right\|}\tag{3.29}$$

The distance between the skew lines $L_1: \mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{b}_1$ and $L_2: \mathbf{r} = \mathbf{a}_2 + \mu \mathbf{b}_2$ is given by,

$$\operatorname{dist}(L_{1}, L_{2}) = \left| \frac{(a_{2} - a_{1}) \cdot (b_{1} \times b_{2})}{\|b_{1} \times b_{2}\|} \right|$$
(3.30)

3.3.6 Planes

Point-normal form

Consider a plane containing a point $\mathbf{a} \coloneqq \langle x_1, y_1, z_1 \rangle$ and having a normal vector $\mathbf{n} \coloneqq \langle a, b, c \rangle$. A point $\mathbf{r} \coloneqq \langle x, y, z \rangle$ on the plane is given by,

$$(\mathbf{r} - \mathbf{a}) \cdot \mathbf{n} = 0 \quad \text{or} \quad \mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$$

$$\therefore \langle \mathbf{x}, \mathbf{y}, \mathbf{z} \rangle \cdot \langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle = \langle \mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1 \rangle \cdot \langle \mathbf{a}, \mathbf{b}, \mathbf{c} \rangle$$

$$\therefore \mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} + \mathbf{c}\mathbf{z} = \mathbf{a}\mathbf{x}_1 + \mathbf{b}\mathbf{y}_1 + \mathbf{c}\mathbf{z}_1$$
(3.31)

Let $d := ax_1 + by_1 + cz_1$.

$$\implies ax + by + cz = d \tag{3.32}$$

This is known as the Cartesian equation of the plane.

Two intersecting lines

Consider two intersecting lines given by $\mathbf{r} = \mathbf{a} + \lambda \mathbf{p}$ and $\mathbf{r} = \mathbf{a} + \mu \mathbf{q}$.

The normal vector \mathbf{n} to the plane is given by $\mathbf{n} := \mathbf{p} \times \mathbf{q}$. From eq. (3.31),

$$(\mathbf{r} - \mathbf{a}) \cdot (\mathbf{p} \times \mathbf{q}) = 0 \Longrightarrow \det (\mathbf{r} - \mathbf{a} \quad \mathbf{p} \quad \mathbf{q}) = 0$$
 (3.33)

Two parallel lines

Consider two parallel lines given by $\mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{b}$ and $\mathbf{a}_2 + \mu \mathbf{b}$.

The normal vector \mathbf{n} to the plane is given by $\mathbf{n} \coloneqq (\mathbf{a}_2 - \mathbf{a}_1) \times \mathbf{b}$. From eq. (3.31),

$$(\mathbf{r} - \mathbf{a}_1) \cdot ((\mathbf{a}_2 - \mathbf{a}_1)) \times \mathbf{b}) = 0 \Longrightarrow \det \begin{pmatrix} \mathbf{r} - \mathbf{a}_1 & \mathbf{a}_2 - \mathbf{a}_1 & \mathbf{q} \end{pmatrix} = 0$$
 (3.34)

Normal form

Consider a plane having a normal vector $\mathbf{n} \propto \langle \mathbf{l}, \mathbf{m}, \mathbf{n} \rangle$ and being at a distance of d from the origin. A point $\mathbf{r} \coloneqq \langle \mathbf{x}, \mathbf{y}, \mathbf{z} \rangle$ on the plane is given by,

$$\mathbf{r} \cdot \mathbf{n} = \mathbf{d} \tag{3.35}$$

$$\implies lx + my + nz = d \tag{3.36}$$

Intercept form

A plane in three dimensional space having intercepts of a, b and c on the x, y and z axes respectively is given by,

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \tag{3.37}$$

Distances from a plane

• The distance of a point $\mathbf{a} \coloneqq \langle x_1, y_1, z_1 \rangle$ from a plane $\Pi : \mathbf{r} \cdot \mathbf{n} = \mathbf{d}$ is given by,

$$\operatorname{dist}\left(\mathbf{a},\Pi\right) = \left|\frac{\mathbf{a} \cdot \mathbf{n} - \mathbf{d}}{\|\mathbf{n}\|}\right| \tag{3.38}$$

If $n := \langle a, b, c \rangle$, then by eq. (3.32) and eq. (3.38),

dist
$$(\mathbf{a}, \Pi) = \left| \frac{ax_1 + by_1 + cz_1 - d}{\sqrt{a^2 + b^2 + c^2}} \right|$$
 (3.39)

• The distance between the parallel planes $\Pi_1: {f r}\cdot {f n}=d_1$ and $\Pi_1: {f r}\cdot {f n}=d_2$ is given by,

$$\operatorname{dist}(\Pi_1, \Pi_2) = \frac{d_1 \sim d_2}{\|\mathbf{n}\|} \tag{3.40}$$

Family of planes

The family of planes passing through the line of intersection of two planes Π_1 and Π_2 is given by,

$$\Pi_1 + \lambda \Pi_2 = 0, \ \lambda \in \mathbb{R} \tag{3.41}$$

The bisector plane between two intersecting planes given by ${f r}\cdot{f n}_1=d_1$ and ${f r}\cdot{f n}_2=d_2$ is given by,

$$\left| \frac{\mathbf{r} \cdot \mathbf{n}_1 - \mathbf{d}_1}{\|\mathbf{n}\|_1} \right| = \left| \frac{\mathbf{r} \cdot \mathbf{n}_2 - \mathbf{d}_2}{\|\mathbf{n}_2\|} \right| \tag{3.42}$$

Angles made by a plane

• The angle θ between the planes with normal vectors \mathbf{n}_1 and \mathbf{n}_2 is given by,

$$\theta = \arccos\left(\hat{\mathbf{n}}_1 \cdot \hat{\mathbf{n}}_2\right) = \arccos\left(\frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{\|\mathbf{n}_2\| \|\mathbf{n}_2\|}\right) \tag{3.43}$$

• The angle θ between the plane given by $r\cdot n=d$ and the line given by $r=\alpha+\lambda b$ is given by,

$$\theta = \arcsin\left(\hat{\mathbf{n}} \cdot \hat{\mathbf{b}}\right) = \arcsin\left(\frac{\mathbf{n} \cdot \mathbf{b}}{\|\mathbf{n}\| \|\mathbf{b}\|}\right) \tag{3.44}$$

Vector Calculus

4.1 Vector Fields

4.2 Nabla Operator

The operator ∇ is pronounced as "nabla" (or del).

In 2D, it is defined as,

$$\mathbf{\nabla} \coloneqq \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right\rangle \tag{4.1}$$

In 3D, it is defined as,

$$\nabla \coloneqq \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \tag{4.2}$$

In a space with n dimensions, it is defined as,

$$\nabla := \left\langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial x_n} \right\rangle \tag{4.3}$$

4.3 Gradient

Consider f(x) to be a scalar multivariable function.

In 2D, f will be denoted as f(x, y).

In 3D, f will be denoted as f(x, y, z).

In a space with n dimensions, f will be denoted as $f(x_1, x_2, \dots, x_n)$.

$$\nabla f := \left\langle \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right\rangle$$
 (4.4)

4.4 Divergence

The divergence of a vector field **F** is defined as,

$$\nabla \cdot \mathbf{F} \coloneqq \frac{\partial (\mathbf{F} \cdot \hat{\mathbf{e}}_{1})}{\partial x_{1}} + \frac{\partial (\mathbf{F} \cdot \hat{\mathbf{e}}_{2})}{\partial x_{2}} + \dots + \frac{\partial (\mathbf{F} \cdot \hat{\mathbf{e}}_{n})}{\partial x_{n}}$$

$$= \sum_{i=1}^{n} \frac{\partial (\mathbf{F} \cdot \hat{\mathbf{e}}_{i})}{\partial x_{i}}$$
(4.5)

In 2D,

$$\nabla \cdot \mathbf{F} = \frac{\partial (\mathbf{F} \cdot \hat{\mathbf{i}})}{\partial x} + \frac{\partial (\mathbf{F} \cdot \hat{\mathbf{j}})}{\partial y}$$
(4.6)

In 3D,

$$\nabla \cdot \mathbf{F} = \frac{\partial (\mathbf{F} \cdot \hat{\mathbf{i}})}{\partial x} + \frac{\partial (\mathbf{F} \cdot \hat{\mathbf{j}})}{\partial y} + \frac{\partial (\mathbf{F} \cdot \hat{\mathbf{k}})}{\partial z}$$
(4.7)

Positive divergence acts as a source while negative divergence acts as a sink.

4.5 Curl

In three dimensions, $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle$.

The curl of a 3D vector field F is defined as,

$$\nabla \times \mathbf{F} := \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \mathbf{F} \cdot \hat{\mathbf{i}} & \mathbf{F} \cdot \hat{\mathbf{j}} & \mathbf{F} \cdot \hat{\mathbf{k}} \end{vmatrix}$$

$$= \left\langle \frac{\partial (\mathbf{F} \cdot \mathbf{k})}{\partial y} - \frac{\partial (\mathbf{F} \cdot \mathbf{j})}{\partial z}, \frac{\partial (\mathbf{F} \cdot \mathbf{i})}{\partial z} - \frac{\partial (\mathbf{F} \cdot \mathbf{k})}{\partial x}, \frac{\partial (\mathbf{F} \cdot \mathbf{j})}{\partial x} - \frac{\partial (\mathbf{F} \cdot \mathbf{i})}{\partial y} \right\rangle$$
(4.8)

4.6 Laplacian

Consider f(x) to be a scalar multivariable function.

In 2D, the Laplacian of f is defined as,

$$\nabla^2 f := \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \tag{4.9}$$

In 3D, the Laplacian of f is defined as,

$$\nabla^2 f := \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$
 (4.10)

In a space with n dimensions, the Laplacian of f is defined as,

$$\nabla^{2} f := \frac{\partial^{2} f}{\partial x_{1}^{2}} + \frac{\partial^{2} f}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2} f}{\partial x_{n}^{2}}$$

$$= \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}$$
(4.11)

4.7 Directional Derivative

The derivative of a scalar multivariable function f(x) in the direction of a vector v is given by,

$$\nabla_{\mathbf{v}} f(\mathbf{x}) := \lim_{h \to 0} \frac{f(\mathbf{x} + h\hat{\mathbf{v}}) - f(\mathbf{x})}{h\|\mathbf{v}\|}$$
$$= \frac{\mathbf{v}}{\|\mathbf{v}\|} \cdot \nabla f(\mathbf{x}) = \hat{\mathbf{v}} \cdot \nabla f(\mathbf{x})$$
(4.12)

Differential Geometry

5.1 Defining Quantities

5.1.1 Vectors

Position

Position is denoted as $\mathbf{r}(t)$.

In 2D, $\mathbf{r}(t) \coloneqq \langle \mathbf{x}(t), \mathbf{y}(t) \rangle$.

In 3D, $\mathbf{r}(t) \coloneqq \langle \mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t) \rangle$.

In an n-dimensional space,

$$\mathbf{r}(\mathsf{t}) := \sum_{i=0}^{n} r_i(\mathsf{t}) \hat{\mathbf{e}}_i \tag{5.1}$$

Taylor-Series expansion

$$\mathbf{r}(t) = \mathbf{r}(0) + \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}(0) \cdot t + \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2}(0) \cdot \frac{t^2}{2!} + \frac{\mathrm{d}^3\mathbf{r}}{\mathrm{d}t^3}(0) \cdot \frac{t^3}{3!} + \dots$$

$$= \sum_{n=0}^{\infty} \frac{\mathrm{d}^n\mathbf{r}}{\mathrm{d}t^n}(0) \cdot \frac{t^n}{n!}$$
(5.2)

Displacement

Displacement is denoted as $d(t_1, t_2)$.

$$\mathbf{d}(\mathsf{t}_1,\mathsf{t}_2) \coloneqq \mathbf{r}(\mathsf{t}_2) - \mathbf{r}(\mathsf{t}_1) \tag{5.3}$$

Velocity

Velocity is denoted as v(t).

$$v(t) := \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}(t)$$
 (5.4)

Acceleration

Acceleration is denoted as a(t).

$$a(t) := \frac{\mathrm{d} v}{\mathrm{d} t}(t) = \frac{\mathrm{d}^2 r}{\mathrm{d} t^2}(t)$$
 (5.5)

Jerk

Jerk is denoted as j(t).

$$\mathbf{j}(\mathbf{t}) \coloneqq \frac{\mathrm{d}\mathbf{a}}{\mathrm{d}\mathbf{t}}(\mathbf{t}) = \frac{\mathrm{d}^2\mathbf{v}}{\mathrm{d}\mathbf{t}^2}(\mathbf{t}) = \frac{\mathrm{d}^3\mathbf{r}}{\mathrm{d}\mathbf{t}^3}(\mathbf{t}) \tag{5.6}$$

Tangent

The unit tangent vector is denoted by $\hat{\mathbf{T}}(t)$.

$$\hat{\mathsf{T}}(\mathsf{t}) \coloneqq \hat{\mathsf{v}}(\mathsf{t}) = \frac{\mathsf{v}(\mathsf{t})}{\|\mathsf{v}(\mathsf{t})\|} \tag{5.7}$$

Normal

The unit normal vector is denoted by $\hat{\mathbf{N}}(t)$.

$$\hat{\mathbf{N}}(t) \coloneqq \frac{\mathrm{d}\hat{\mathbf{T}}(t)/\mathrm{d}t}{\left\|\mathrm{d}\hat{\mathbf{T}}(t)/\mathrm{d}t\right\|}$$
(5.8)

Binormal

The unit binormal vector is denoted by $\hat{\mathbf{B}}(t)$.

$$\hat{\mathbf{B}}(t) \coloneqq \hat{\mathbf{T}}(t) \times \hat{\mathbf{N}}(t) \tag{5.9}$$

5.1.2 Scalars

Speed

Speed is denoted as v(t).

$$v(t) \coloneqq \|v(t)\| \tag{5.10}$$

Arc Length

Arc length is denoted as s(t).

$$\mathbf{s}(\mathbf{t}) \coloneqq \int_{0}^{\mathbf{t}} \mathbf{v}(\tau) d\tau \tag{5.11}$$

Curvature

Curvature is denoted as $\kappa(t)$.

$$\kappa(t) \coloneqq \frac{\left\| \boldsymbol{\nu}(t) \times \boldsymbol{\alpha}(t) \right\|}{\left\| \boldsymbol{\nu}(t) \right\|^3} \tag{5.12}$$

Radius of Curvature

Radius of curvature is denoted as R(t).

$$R(t) := \frac{1}{\kappa(t)} \tag{5.13}$$

Tangential Angle

Tangential angle is denoted as $\phi(t)$.

$$\varphi(t) := \int_0^t \kappa(\tau) \cdot \nu(\tau) d\tau \tag{5.14}$$

Torsion

Torsion is denoted as $\tau(t)$.

$$\tau(t) := \frac{\det \left(\mathbf{v}(t) \quad \mathbf{a}(t) \quad \mathbf{j}(t) \right)}{\left\| \mathbf{v}(t) \times \mathbf{a}(t) \right\|^{2}}$$
 (5.15)

If $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, then

$$\tau(t) := \frac{\begin{vmatrix} x'(t) & y'(t) & z'(t) \\ x''(t) & y''(t) & z''(t) \\ x'''(t) & y'''(t) & z'''(t) \end{vmatrix}}{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|^2}$$
(5.16)

5.2 Theorems

